Mittag–Leffler stability, control, and synchronization for chaotic generalized fractional-order systems

Author:

Abed-Elhameed Tarek M.ORCID,Aboelenen Tarek

Abstract

AbstractIn this paper, we investigate the generalized fractional system (GFS) with order lying in $(1, 2)$ ( 1 , 2 ) . We present stability analysis of GFS by two methods. First, the stability analysis of that system using the Gronwall–Bellman (G–B) Lemma, the Mittag–Leffler (M–L) function, and the Laplace transform is introduced. Secondly, by the Lyapunov direct method, we study the M–L stability of our system with order lying in $(1, 2)$ ( 1 , 2 ) . Using the modified predictor–corrector method, the solutions of GFSs are calculated and they are more complicated than the classical fractional one. Based on linear feedback control, we investigate a theorem to control the chaotic GFSs with order lying in $(1, 2)$ ( 1 , 2 ) . We present an example to verify the validity of control theorem. We state and prove a theorem to calculate the analytical formula of controllers that are used to achieve synchronization between two different chaotic GFSs. An example to study the synchronization for systems with orders lying in $(1, 2)$ ( 1 , 2 ) is given. We found an agreement between analytical results and numerical simulations.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Algebra and Number Theory,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3