Abstract
AbstractIn this article we examine the dynamical properties of the fractional version of the snap system by means of chaotic attractor, existence, and uniqueness of the solution, symmetry, dissipativity, stagnation point analysis, Lyapunov dynamics, K.Y. dimension, bifurcation diagram, etc. Also, parallel systems to this system are synchronized in presence of uncertainties and external disturbances using triple compound combination anti-synchronization by two ways. Synchronization time is compared with some other works. Also the utilization of achieved synchronization is illustrated in secure transmission. By constructing the snap system’s signal flow graph and its real electronic circuit, some of its additional invariants are investigated.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference68 articles.
1. Baleanu, D., Ghanbari, B., Asad, J.H., Jajarmi, A., Pirouz, H.M.: Planar system-masses in an equilateral triangle: numerical study within fractional calculus. Comput. Model. Eng. Sci. 124(3), 953–968 (2020)
2. Baleanu, D., Jajarmi, A., Sajjadi, S.S., Asad, J.H.: The fractional features of a harmonic oscillator with position-dependent mass. Commun. Theor. Phys. 72(5), 055002 (2020)
3. Boccaletti, S., Valladares, D.L.: Characterization of intermittent lag synchronization. Phys. Rev. E 62(5), 7497–7500 (2000)
4. Broucke, M.: One parameter bifurcation diagram for Chua’s circuit. IEEE Trans. Circuits Syst. 34(2), 208–209 (1987)
5. Buscarino, A., Fortuna, L., Frasca, M., Sciuto, G.: A Concise Guide to Chaotic Electronic Circuits. Springer, Berlin (2014)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献