Abstract
AbstractIn this article, the investigation is centered around the quantum estimates by utilizing quantum Hahn integral operator via the quantum shift operator ${}_{\eta}\psi_{\mathfrak{q}}(\zeta)=\mathfrak{q}\zeta+(1-\mathfrak{q})\eta$
ψ
q
η
(
ζ
)
=
q
ζ
+
(
1
−
q
)
η
, $\zeta\in[\mu,\nu]$
ζ
∈
[
μ
,
ν
]
, $\eta=\mu+\frac{\omega}{(1-\mathfrak{q})}$
η
=
μ
+
ω
(
1
−
q
)
, $0<\mathfrak{q}<1$
0
<
q
<
1
, $\omega\geq0$
ω
≥
0
. Our strategy includes fractional calculus, Jackson’s $\mathfrak{q}$
q
-integral, the main ideas of quantum calculus, and a generalization used in the frame of convex functions. We presented, in general, three types of fractional quantum integral inequalities that can be utilized to explain orthogonal polynomials, and exploring some estimation problems with shifting estimations of fractional order $\varrho_{1}$
ϱ
1
and the $\mathfrak{q}$
q
-numbers have yielded fascinating outcomes. As an application viewpoint, an illustrative example shows the effectiveness of $\mathfrak{q}$
q
, ω-derivative for boundary value problem.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference40 articles.
1. Liang, S., Samei, M.E.: Some theorems of existence of solutions for fractional hybrid q-difference inclusion. J. Adv. Math. Stud. 12(1), 63–76 (2019)
2. Liang, S., Samei, M.E.: New approach to solutions of a class of singular fractional q-differential problem via quantum calculus. Adv. Differ. Equ. 2020, 14 (2020). https://doi.org/10.1186/s13662-019-2489-2
3. Samei, M.E.: Existence of solutions for a system of singular sum fractional q-differential equations via quantum calculus. Adv. Differ. Equ. 2020, 23 (2020). https://doi.org/10.1186/s13662-019-2480-y
4. Samei, M.E., Ranjbar, G.K., Hedayati, V.: Existence of solutions for equations and inclusions of multi-term fractional q-integro-differential with non-separated and initial boundary conditions. J. Inequal. Appl. 2019, 273 (2019). https://doi.org/10.1186/s13660-019-2224-2
5. Samei, M.E., Ranjbar, G.K., Hedayati, V.: Existence of solutions for a class of Caputo fractional q-difference inclusion on multifunctions by computational results. Kragujev. J. Math. 45(4), 543–570 (2021)
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献