Construction of a new family of Fubini-type polynomials and its applications

Author:

Srivastava H. M.ORCID,Srivastava RekhaORCID,Muhyi AbdulghaniORCID,Yasmin Ghazala,Islahi Hibah,Araci SerkanORCID

Abstract

AbstractThis paper gives an overview of systematic and analytic approach of operational technique involves to study multi-variable special functions significant in both mathematical and applied framework and to introduce new families of special polynomials. Motivation of this paper is to construct a new class of generalized Fubini-type polynomials of the parametric kind via operational view point. The generating functions, differential equations, and other properties for these polynomials are established within the context of the monomiality principle. Using the generating functions, various interesting identities and relations related to the generalized Fubini-type polynomials are derived. Further, we obtain certain partial derivative formulas including the generalized Fubini-type polynomials. In addition, certain members belonging to the aforementioned general class of polynomials are considered. The numerical results to calculate the zeros and approximate solutions of these polynomials are given and their graphical representation are shown.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Algebra and Number Theory,Analysis

Reference27 articles.

1. Cocolicchio, D., Dattoli, G., Srivastava, H.M. (eds.): Advanced Special Functions and Applications (Proceedings of the First Melfi School on Advanced Topics in Mathematics and Physics; Melfi, Italy, May 9–12, 1999) Aracne Editrice, Rome (2000)

2. Dattoli, G., Migliorati, M., Srivastava, H.M.: A class of Bessel summation formulas and associated operational methods. Fract. Calc. Appl. Anal. 7(2), 169–176 (2004)

3. Dere, R., Simsek, Y., Srivastava, H.M.: A unified presentation of three families of generalized Apostol type polynomials based upon the theory of the umbral calculus and the umbral algebra. J. Number Theory 133, 3245–3263 (2013)

4. Gould, H.W., Hopper, A.T.: Operational formulas connected with two generalizations of Hermite polynomials. Duke Math. J. 29, 51–63 (1962)

5. He, Y., Araci, S., Srivastava, H.M.: Some new formulas for the products of the Apostol type polynomials. Adv. Differ. Equ. 2016, Article ID 287 (2016)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3