Existence and asymptotic behavior of Radon measure-valued solutions for a class of nonlinear parabolic equations

Author:

Nkombo Quincy Stévène,Li Fengquan,Tathy Christian

Abstract

AbstractIn this paper we address the weak Radon measure-valued solutions associated with the Young measure for a class of nonlinear parabolic equations with initial data as a bounded Radon measure. This problem is described as follows: $$ \textstyle\begin{cases} u_{t}=\alpha u_{xx}+\beta [\varphi (u) ]_{xx}+f(u) &\text{in} \ Q:=\Omega \times (0,T), \\ u=0 &\text{on} \ \partial \Omega \times (0,T), \\ u(x,0)=u_{0}(x) &\text{in} \ \Omega , \end{cases} $$ { u t = α u x x + β [ φ ( u ) ] x x + f ( u ) in Q : = Ω × ( 0 , T ) , u = 0 on Ω × ( 0 , T ) , u ( x , 0 ) = u 0 ( x ) in Ω , where $T>0$ T > 0 , $\Omega \subset \mathbb{R}$ Ω R is a bounded interval, $u_{0}$ u 0 is nonnegative bounded Radon measure on Ω, and $\alpha , \beta \geq 0$ α , β 0 , under suitable assumptions on φ and f. In this work we prove the existence and the decay estimate of suitably defined Radon measure-valued solutions for the problem mentioned above. In particular, we study the asymptotic behavior of these Radon measure-valued solutions.

Funder

national natural sciences foundation of china

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Algebra and Number Theory,Analysis

Reference46 articles.

1. Marco, P., Michaela, P.M., Flavia, S.: Existence of solutions to a class of weakly coercive diffusion equations with singular initial data. Advances in Differential Equations 22(11–12), 893–963 (2017)

2. Feireisl, E., Frédérique, S.: Convergence for degenerate parabolic equations. J. Differential Equations 152(2), 439–466 (1999)

3. Hiroshi, M.: Convergence of solutions of one-dimensional semilinear parabolic equations. J. Math. Kyoto Univ. 18(2), 221–227 (1978)

4. Donald, A., Michael, C.: Peletier Lambertus Adrianus., Stabilization of solutions of a degenerate nonlinear diffusion problem. Nonlinear Anal. 6(10), 1001–1022 (1982)

5. Flavia, S., Tesei, A.: Degenerate regularization of forward-backward parabolic equations: the regularized problem. Arch. Ration. Mech. Anal. 204(1), 85–139 (2012)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3