Abstract
AbstractWe consider the existence and multiplicity of positive solutions of the Dirichlet problem for the quasilinear difference equation $$ \textstyle\begin{cases} -\nabla [\phi (\triangle u(t))]=\lambda a(t,u(t))+\mu b(t,u(t)), \quad t\in \mathbb{T}, \\ u(1)=u(N)=0, \end{cases} $$
{
−
∇
[
ϕ
(
△
u
(
t
)
)
]
=
λ
a
(
t
,
u
(
t
)
)
+
μ
b
(
t
,
u
(
t
)
)
,
t
∈
T
,
u
(
1
)
=
u
(
N
)
=
0
,
where $\lambda ,\mu \geq 0$
λ
,
μ
≥
0
, $\mathbb{T}=\{2,\ldots ,N-1\}$
T
=
{
2
,
…
,
N
−
1
}
with $N>3$
N
>
3
, $\phi (s)=s/\sqrt{1-s^{2}}$
ϕ
(
s
)
=
s
/
1
−
s
2
. The function $f:=\lambda a(t,s)+\mu b(t,s)$
f
:
=
λ
a
(
t
,
s
)
+
μ
b
(
t
,
s
)
is either sublinear, or superlinear, or sub-superlinear near $s=0$
s
=
0
. Applying the topological method, we prove the existence of either one or two, or three positive solutions.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献