Modeling and analysis of taeniasis and cysticercosis transmission dynamics in humans, pigs and cattle

Author:

Mwasunda Joshua A.ORCID,Irunde Jacob I.,Kajunguri Damian,Kuznetsov Dmitry

Abstract

AbstractTaeniasis and cysticercosis pose a significant challenge to food safety and public health. Cysticercosis reduces the market value for pigs and cattle by making pork and beef unsafe for consumption. In this paper, a mathematical model for the transmission dynamics of taeniasis and cysticercosis in humans, pigs and cattle is formulated and analyzed. The analysis shows that both the disease free equilibrium (DFE) and the endemic equilibrium (EE) exist. To study the dynamics of the diseases, we derived the basic reproduction number $R_{0}$ R 0 by next generation matrix method. When $R_{0}< 1$ R 0 < 1 , the DFE is globally asymptotically stable whereas when $R_{0} > 1$ R 0 > 1 the EE is globally asymptotically stable. The normalized forward sensitivity index was used to determine sensitive parameters to the diseases. Humans’ recruitment rate, probability of humans’ infection with taeniasis and the defecation rate of taenia eggs by humans with taeniasis are the most positive sensitive parameters to diseases’ transmission whereas the human natural death rate is the most negative sensitive parameter. However, it is biologically unethical and not practical to increase human natural mortality rate for disease control. In this case, other parameters with negative sensitivity indices such as death rate of taenia eggs and proportions of unconsumed infected beef and pork can be considered for disease control. Generally, to control the diseases, more efforts should be made directed to reducing the number of humans who have taeniasis and defecate in the open environment. Also meat inspection and indoor keeping of cattle and pigs should be emphasized.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Algebra and Number Theory,Analysis

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3