Abstract
AbstractIn this research, we present the stability analysis of a fractional differential equation of a generalized Liouville–Caputo-type (Katugampola) via the Hilfer fractional derivative with a nonlocal integral boundary condition. Besides, we derive the relation between the proposed problem and the Volterra integral equation. Using the concepts of Banach and Krasnoselskii’s fixed point theorems, we investigate the existence and uniqueness of solutions to the proposed problem. Finally, we present two examples to clarify the abstract result.
Funder
King Mongkut's University of Technology Thonburi
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference55 articles.
1. Abbas, S., Arifi, N.A., Benchohra, M., Zhou, Y.: Random coupled Hilfer and Hadamard fractional differential systems in generalized Banach spaces. Mathematics 7(3), 285 (2019)
2. Abbas, S., Benchohra, M., Lagreg, J., Alsaedi, A., Zhou, Y.: Existence and Ulam stability for fractional differential equations of Hilfer–Hadamard type. Adv. Differ. Equ. 2017(1), 180 (2017)
3. Abdeljawad, T., Jarad, F., Baleanu, D.: On the existence and the uniqueness theorem for fractional differential equations with bounded delay within Caputo derivatives. Sci. China Ser. A, Math. 51(10), 1775–1786 (2008)
4. Abdo, M.S., Panchal, S.K., Bhairat, S.P.: Existence of solution for Hilfer fractional differential equations with boundary value conditions. arXiv preprint (2019). arXiv:1909.13680
5. Ahmad, B., Nieto, J.J.: Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions. Bound. Value Probl. 2009(1), 708576 (2009)
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献