Author:
Zaghdani Abdelhamid,Ezzat Mohamed
Abstract
AbstractWe introduce and analyze a new mixed discontinuous Galerkin method for approximation of an electric field. We carry out its error analysis and prove an error estimate that is optimal in the mesh size. Some numerical results are given to confirm the theoretical convergence.
Funder
Northern border university
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference30 articles.
1. Golmankhaneh, A.K., Golmankhaneh, A.K., Baleanu, D.: About Maxwell’s equations on fractal subsets of ${ R}^{3}$. Cent. Eur. J. Phys. 11, 863–867 (2013)
2. Alsuyuti, M.M., Doha, E.H., Ezz-Eldien, S.S., Bayoumi, B.I., Baleanu, D.: Modified Galerkin algorithm for solving multitype fractional differential equations. Math. Methods Appl. Sci. 42(5), 1389–1412 (2019)
3. Yang, X.-J., Srivastava, H.M., Baleanu, D.: Initial-boundary value problems for local fractional Laplace equation arising in fractal electrostatics. J. Appl. Nonlinear Dyn. 4(4), 349–356 (2015)
4. Khalid, A., Naeem, M.N., Ullah, Z., Ghaffar, A., Baleanu, D., Nisar, K.S., Al-Qurashi, M.M.: Numerical solution of the boundary value problems arising in magnetic fields and cylindrical shells. Mathematics 7(6), 508 (2019)
5. Golmankhaneh, A.K., Baleanu, D.: Heat and Maxwell’s equations on Cantor cubes. Rom. Rep. Phys. 69, 109 (2017)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献