Abstract
AbstractIn this effort, the analytic solution of a class of algebraic Briot–Bouquet differential equations (ABBDE) in the open unit disk is investigated by making use of a major theory. The class is presented by the formula $$\begin{aligned}& \alpha _{1}\varphi ^{\prime 3}(z) + \alpha _{2} \varphi ^{ ' 2} (z) \varphi (z) + \alpha _{3} \varphi ^{\prime } (z) \varphi ^{2} (z) +\aleph ^{k}_{\varphi }(z) = 0, \\& \aleph ^{k}_{\varphi }(z):= a_{k} \varphi ^{k}(z)+a_{k-1} \varphi ^{k-1}(z)+\cdots+ a_{1} \varphi (z)+ a_{0}. \end{aligned}$$
α
1
φ
′
3
(
z
)
+
α
2
φ
2
′
(
z
)
φ
(
z
)
+
α
3
φ
′
(
z
)
φ
2
(
z
)
+
ℵ
φ
k
(
z
)
=
0
,
ℵ
φ
k
(
z
)
:
=
a
k
φ
k
(
z
)
+
a
k
−
1
φ
k
−
1
(
z
)
+
⋯
+
a
1
φ
(
z
)
+
a
0
.
The conformal analysis (angle-preserving) of the ABBDEs is considered. Analytic outcomes of the ABBDEs are indicated by employing the major method. Some special cases are investigated.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献