Author:
Nwaeze Eze R.,Tameru Ana M.
Abstract
Abstract
We establish new quantum Hermite–Hadamard and midpoint types inequalities via a parameter $\mu \in [0,1]$
μ
∈
[
0
,
1
]
for a function F whose $|{}_{\alpha }D_{q}F|^{u}$
|
α
D
q
F
|
u
is η-quasiconvex on $[\alpha ,\beta ]$
[
α
,
β
]
with $u\geq 1$
u
≥
1
. Results obtained in this paper generalize, sharpen, and extend some results in the literature. For example, see (Noor et al. in Appl. Math. Comput. 251:675–679, 2015; Alp et al. in J. King Saud Univ., Sci. 30:193–203, 2018) and (Kunt et al. in Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 112:969–992, 2018). By choosing different values of μ, loads of novel estimates can be deduced. We also present some illustrative examples to show how some consequences of our results may be applied to derive more quantum inequalities.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference22 articles.
1. Alomari, M., Darius, M., Dragomir, S.S.: Inequalities of Hermite–Hadamard’ type for functions whose derivatives absolute values are quasi-convex. RGMIA Res. Rep. Collect. 12(suppl.), Article ID 14
2. Alp, N., Sarikaya, M.Z., Kunt, M., Işcan, I.: q-Hermite–Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ., Sci. 30, 193–203 (2018)
3. Awan, M.U., Noorb, M.A., Noorb, K.I., Safdarb, F.: On strongly generalized convex functions. Filomat 31(18), 5783–5790 (2017)
4. Chen, F., Yang, W.: Some new Chebyshev type quantum integral inequalities on finite intervals. J. Comput. Anal. Appl. 21, 417–426 (2016)
5. Delavar, M.R., Dragomir, S.S.: On η-convexity. Math. Inequal. Appl. 20(1), 203–216 (2017)
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献