Abstract
AbstractThe aim of this work is to offer sufficient conditions for the oscillation of neutral differential equation second order
$$ \bigl( r ( t ) \bigl[ \bigl( y ( t ) +p ( t ) y \bigl( \tau ( t ) \bigr) \bigr) ^{\prime } \bigr] ^{\gamma } \bigr) ^{\prime }+f \bigl( t,y \bigl( \sigma ( t ) \bigr) \bigr) =0, $$(r(t)[(y(t)+p(t)y(τ(t)))′]γ)′+f(t,y(σ(t)))=0, where $\int ^{\infty }r^{-1/\gamma } ( s ) \,\mathrm{d}s= \infty $∫∞r−1/γ(s)ds=∞. Based on the comparison with first order delay equations and by employ the Riccati substitution technique, we improve and complement a number of well-known results. Some examples are provided to show the importance of these results.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference30 articles.
1. Agarwal, R.P., Grace, S.R., O’Regan, D.: Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations. Kluwer Academic, Dordrecht (2002)
2. Agarwal, R.P., Grace, S.R., O’Regan, D.: Oscillation Theory for Second Order Dynamic Equations. Taylor & Francis, London (2003)
3. Agarwal, R.P., Zhang, C., Li, T.: Some remarks on oscillation of second order neutral differential equations. Appl. Math. Comput. 274, 178–181 (2016)
4. Baculikova, B.: Oscillatory behavior of the second order functional differential equations. Appl. Math. Lett. 72, 35–41 (2017)
5. Baculikova, B., Dzurina, J.: Oscillation of third-order neutral differential equations. Math. Comput. Model. 52, 215–226 (2010)
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献