Identifying patterns of clinical conditions among high-cost older adult health care users using claims data: a latent class approach

Author:

He Xiaolin,Li Danjin,Wang Wenyi,Liang Hong,Liang Yan

Abstract

Abstract Objectives To identify patterns of clinical conditions among high-cost older adults health care users and explore the associations between characteristics of high-cost older adults and patterns of clinical conditions. Methods We analyzed data from the Shanghai Basic Social Medical Insurance Database, China. A total of 2927 older adults aged 60 years and over were included as the analysis sample. We used latent class analysis to identify patterns of clinical conditions among high-cost older adults health care users. Multinomial logistic regression models were also used to determine the associations between demographic characteristics, insurance types, and patterns of clinical conditions. Results Five clinically distinctive subgroups of high-cost older adults emerged. Classes included “cerebrovascular diseases” (10.6% of high-cost older adults), “malignant tumor” (9.1%), “arthrosis” (8.8%), “ischemic heart disease” (7.4%), and “other sporadic diseases” (64.1%). Age, sex, and type of medical insurance were predictors of high-cost older adult subgroups. Conclusions Profiling patterns of clinical conditions among high-cost older adults is potentially useful as a first step to inform the development of tailored management and intervention strategies.

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health,Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3