Copine A plays a role in the differentiation of stalk cells and the initiation of culmination in Dictyostelium development

Author:

Smith Tasha S,Pineda Jaimie M,Donaghy Alex C,Damer Cynthia K

Abstract

Abstract Background Copines are calcium-dependent phospholipid-binding proteins found in diverse eukaryotic organisms. We are studying the function of copines in Dictyostelium discoideum, a single-celled amoeba that undergoes cell differentiation and morphogenesis to form multicellular fruiting bodies when placed in starvation conditions. Previously, we showed that Dictyostelium cells lacking the copine A (cpnA) gene are not able to complete the developmental cycle, arresting at the slug stage. The aim of this study is to further characterize the developmental defect of the cpnA- cells. Results Time-lapse imaging revealed that cpnA- cells exhibited delayed aggregation and made large mounds that formed one large slug as compared to the smaller slugs of the wild-type cells. While the prespore cell patterning appeared to be normal within the cpnA- slugs, the prestalk cell patterning was different from wild-type. When cpnA- cells were mixed with a small percentage of wild-type cells, chimeric fruiting bodies with short stalks formed. When a small percentage of cpnA- cells was mixed with wild-type cells, the cpnA- cells labeled with GFP were found located throughout the chimeric slug and in both the stalk and sporehead of the fruiting bodies. However, there appeared to be a small bias towards cpnA- cells becoming spore cells. When cpnA- cells were developed in buffer containing EGTA, they were also able to differentiate into either stalk or spore cells to form fruiting bodies with short stalks. Conclusions Our results indicate that CpnA is involved in the regulation of aggregation, slug size, and culmination during Dictyostelium development. More specifically, CpnA appears to be involved in the function and differentiation of prestalk cells and plays a role in a calcium-regulated signaling pathway critical to triggering the initiation of culmination.

Publisher

Springer Science and Business Media LLC

Subject

Developmental Biology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3