Author:
Lee Huang-Chieh,Tsai Jen-Ning,Liao Pei-Yin,Tsai Wei-Yuan,Lin Kai-Yen,Chuang Chung-Cheng,Sun Chi-Kuang,Chang Wen-Chang,Tsai Huai-Jen
Abstract
Abstract
Background
Glycogen synthase kinase 3 (GSK3) encodes a serine/threonine protein kinase, is known to play roles in many biological processes. Two closely related GSK3 isoforms encoded by distinct genes: GSK3α (51 kDa) and GSK3β (47 kDa). In previously studies, most GSK3 inhibitors are not only inhibiting GSK3, but are also affecting many other kinases. In addition, because of highly similarity in amino acid sequence between GSK3α and GSK3β, making it difficult to identify an inhibitor that can be selective against GSK3α or GSK3β. Thus, it is relatively difficult to address the functions of GSK3 isoforms during embryogenesis. At this study, we attempt to specifically inhibit either GSK3α or GSK3β and uncover the isoform-specific roles that GSK3 plays during cardiogenesis.
Results
We blocked gsk3α and gsk3β translations by injection of morpholino antisense oligonucleotides (MO). Both gsk3α- and gsk3β-MO-injected embryos displayed similar morphological defects, with a thin, string-like shaped heart and pericardial edema at 72 hours post-fertilization. However, when detailed analysis of the gsk3α- and gsk3β-MO-induced heart defects, we found that the reduced number of cardiomyocytes in gsk3α morphants during the heart-ring stage was due to apoptosis. On the contrary, gsk3β morphants did not exhibit significant apoptosis in the cardiomyocytes, and the heart developed normally during the heart-ring stage. Later, however, the heart positioning was severely disrupted in gsk3β morphants. bmp4 expression in gsk3β morphants was up-regulated and disrupted the asymmetry pattern in the heart. The cardiac valve defects in gsk3β morphants were similar to those observed in axin1 and apc
mcr
mutants, suggesting that GSK3β might play a role in cardiac valve development through the Wnt/β-catenin pathway. Finally, the phenotypes of gsk3α mutant embryos cannot be rescued by gsk3β mRNA, and vice versa, demonstrating that GSK3α and GSK3β are not functionally redundant.
Conclusion
We conclude that (1) GSK3α, but not GSK3β, is necessary in cardiomyocyte survival; (2) the GSK3β plays important roles in modulating the left-right asymmetry and affecting heart positioning; and (3) GSK3α and GSK3β play distinct roles during zebrafish cardiogenesis.
Publisher
Springer Science and Business Media LLC
Reference62 articles.
1. Woodgett JR: Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J. 1990, 9: 243-248.
2. Plyte SE, Hughes K, Nikolakaki E, Pulverer BJ, Woodgett JR: Glycogen synthase kinase-3: functions in oncogenesis and development. Biochim Biophys Acta. 1992, 1114: 147-162.
3. Hardt SE, Sadoshima J: Glycogen synthase kinase-3beta: a novel regulator of cardiac hypertrophy and development. Circ Res. 2002, 90: 1055-1063. 10.1161/01.RES.0000018952.70505.F1.
4. van Amerongen R, Berns A: Re-evaluating the role of Frat in Wnt-signal transduction. Cell Cycle. 2005, 4: 1065-1072.
5. Woodgett JR: cDNA cloning and properties of glycogen synthase kinase-3. Methods Enzymol. 1991, 200: 564-577.
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献