Glycogen synthase kinase 3α and 3β have distinct functions during cardiogenesis of zebrafish embryo

Author:

Lee Huang-Chieh,Tsai Jen-Ning,Liao Pei-Yin,Tsai Wei-Yuan,Lin Kai-Yen,Chuang Chung-Cheng,Sun Chi-Kuang,Chang Wen-Chang,Tsai Huai-Jen

Abstract

Abstract Background Glycogen synthase kinase 3 (GSK3) encodes a serine/threonine protein kinase, is known to play roles in many biological processes. Two closely related GSK3 isoforms encoded by distinct genes: GSK3α (51 kDa) and GSK3β (47 kDa). In previously studies, most GSK3 inhibitors are not only inhibiting GSK3, but are also affecting many other kinases. In addition, because of highly similarity in amino acid sequence between GSK3α and GSK3β, making it difficult to identify an inhibitor that can be selective against GSK3α or GSK3β. Thus, it is relatively difficult to address the functions of GSK3 isoforms during embryogenesis. At this study, we attempt to specifically inhibit either GSK3α or GSK3β and uncover the isoform-specific roles that GSK3 plays during cardiogenesis. Results We blocked gsk3α and gsk3β translations by injection of morpholino antisense oligonucleotides (MO). Both gsk3α- and gsk3β-MO-injected embryos displayed similar morphological defects, with a thin, string-like shaped heart and pericardial edema at 72 hours post-fertilization. However, when detailed analysis of the gsk3α- and gsk3β-MO-induced heart defects, we found that the reduced number of cardiomyocytes in gsk3α morphants during the heart-ring stage was due to apoptosis. On the contrary, gsk3β morphants did not exhibit significant apoptosis in the cardiomyocytes, and the heart developed normally during the heart-ring stage. Later, however, the heart positioning was severely disrupted in gsk3β morphants. bmp4 expression in gsk3β morphants was up-regulated and disrupted the asymmetry pattern in the heart. The cardiac valve defects in gsk3β morphants were similar to those observed in axin1 and apc mcr mutants, suggesting that GSK3β might play a role in cardiac valve development through the Wnt/β-catenin pathway. Finally, the phenotypes of gsk3α mutant embryos cannot be rescued by gsk3β mRNA, and vice versa, demonstrating that GSK3α and GSK3β are not functionally redundant. Conclusion We conclude that (1) GSK3α, but not GSK3β, is necessary in cardiomyocyte survival; (2) the GSK3β plays important roles in modulating the left-right asymmetry and affecting heart positioning; and (3) GSK3α and GSK3β play distinct roles during zebrafish cardiogenesis.

Publisher

Springer Science and Business Media LLC

Subject

Developmental Biology

Reference62 articles.

1. Woodgett JR: Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J. 1990, 9: 243-248.

2. Plyte SE, Hughes K, Nikolakaki E, Pulverer BJ, Woodgett JR: Glycogen synthase kinase-3: functions in oncogenesis and development. Biochim Biophys Acta. 1992, 1114: 147-162.

3. Hardt SE, Sadoshima J: Glycogen synthase kinase-3beta: a novel regulator of cardiac hypertrophy and development. Circ Res. 2002, 90: 1055-1063. 10.1161/01.RES.0000018952.70505.F1.

4. van Amerongen R, Berns A: Re-evaluating the role of Frat in Wnt-signal transduction. Cell Cycle. 2005, 4: 1065-1072.

5. Woodgett JR: cDNA cloning and properties of glycogen synthase kinase-3. Methods Enzymol. 1991, 200: 564-577.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3