Effects of NGF, NT-3 and GDNF family members on neurite outgrowth and migration from pelvic ganglia from embryonic and newborn mice

Author:

Stewart Ashley L,Anderson Richard B,Kobayashi Kazuto,Young Heather M

Abstract

Abstract Background Pelvic ganglia are derived from the sacral neural crest and contain both sympathetic and parasympathetic neurons. Various members of the neurotrophin and GDNF families of neurotrophic factors have been shown to play important roles in the development of a variety of peripheral sympathetic and parasympathetic neurons; however, to date, the role of these factors in the development of pelvic ganglia has been limited to postnatal and older ages. We examined the effects of NGF, NT-3, GDNF, neurturin and artemin on cell migration and neurite outgrowth from explants of the pelvic ganglia from embryonic and newborn mice grown on collagen gels, and correlated the responses with the immunohistochemical localization of the relevant receptors in fixed tissue. Results Cell migration assays showed that GDNF strongly stimulated migration of tyrosine hydroxylase (TH) cells of pelvic ganglia from E11.5, E14.5 and P0 mice. Other factors also promoted TH cell migration, although to a lesser extent and only at discrete developmental stages. The cells and neurites of the pelvic ganglia were responsive to each of the GDNF family ligands – GDNF, neurturin and artemin – from E11.5 onwards. In contrast, NGF and NT-3 did not elicit a significant neurite outgrowth effect until E14.5 onwards. Artemin and NGF promoted significant outgrowth of sympathetic (TH+) neurites only, whereas neurturin affected primarily parasympathetic (TH-negative) neurite outgrowth, and GDNF and NT-3 enhanced both sympathetic and parasympathetic neurite outgrowth. In comparison, collagen gel assays using gut explants from E11.5 and E14.5 mice showed neurite outgrowth only in response to GDNF at E11.5 and to neurturin only in E14.5 mice. Conclusion Our data show that there are both age-dependent and neuron type-dependent differences in the responsiveness of embryonic and neo-natal pelvic ganglion neurons to growth factors.

Publisher

Springer Science and Business Media LLC

Subject

Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3