Central cholinergic signal-mediated neuroendocrine regulation of vasopressin and oxytocin in ovine fetuses

Author:

Shi Lijun,Mao Caiping,Zeng Fanxing,Zhang Yuying,Xu Zhice

Abstract

Abstract Background The hypothalamic-neurohypophysial system plays a fundamental role in the maintenance of body fluid homeostasis by secreting arginine vasopressin (AVP) and oxytocin (OT) in response to a variety of signals, including osmotic and nonosmotic stimuli. It is well established that central cholinergic mechanisms are critical in the regulation of cardiovascular responses and maintenance of body fluid homeostasis in adults. Our recent study demonstrated that intracerebroventricular (i.c.v.) injection of carbachol elicited an increase of blood pressure in the near-term ovine fetuses. However, in utero development of brain cholinergic mechanisms in the regulation of the hypothalamic neuropeptides is largely unknown. This study investigated AVP and OT neural activation in the fetal hypothalamus induced by central carbachol. Results Chronically prepared near-term ovine fetuses (0.9 gestation) received an i.c.v. carbachol (3 μg/kg). Fetal blood samples were collected for AVP and OT assay, and brains were used for c-fos mapping studies. I.c.v. carbachol significantly increased fetal plasma AVP and OT concentrations. Intense FOS immunoreactivity (FOS-ir) was observed in the fetal supraoptic nuclei (SON) and paraventricular nuclei (PVN) in the hypothalamus. Double labeling demonstrated that a number of AVP- and OT-containing neurons in the fetal SON and PVN were expressing c-fos in response to central carbachol. Conclusion The results indicate that the central cholinergic mechanism is established and functional in the regulation of the hypothalamic neuropeptides during the final trimester of pregnancy. This provides evidence for a functional link between the development of central cholinergic mechanisms and hypothalamic neuropeptide systems in the fetus.

Publisher

Springer Science and Business Media LLC

Subject

Developmental Biology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3