Author:
Acosta Sandra,Lavarino Cinzia,Paris Raquel,Garcia Idoia,de Torres Carmen,Rodríguez Eva,Beleta Helena,Mora Jaume
Abstract
Abstract
Background
Neuroblastic tumors (NBT) derive from neural crest stem cells (NCSC). Histologically, NBT are composed by neuroblasts and Schwannian cells. In culture, neuroblastic (N-), substrate-adherent (S-) and intermediate phenotype (I-) cell subtypes arise spontaneously.
Methods
Here, neuroblastoma (NB) cell line subtypes were characterized according to embryonic peripheral nervous system development markers (GAP43, Phox2b, Sox10, c-kit, GD2, NF68, vimentin, S100β, calcyclin and ABCG2), morphological features, gene expression and differentiation potential. I-type cells were investigated as a bipotential (neuronal and glial) differentiation stage.
Results
Positive immunostaining of NCSC (GAP43, c-kit, NF68, vimentin and Phox2b) and undifferentiated cell (ABCG2) markers was observed in all NB subtypes. N- and I-type cells displayed cytoplasmic membrane GD2 staining, while nuclear calcyclin was restricted to S-type. N- and I-type cells showed similar phenotype and immunoreactivity pattern. Differential gene expression was associated with each cell subtype. N- and I-type cells displayed similar differentiation capacity towards neuronal and glial lineage fates. S-type cells, upon induction, did not show a neuronal-like phenotype, despite gene expression changes.
Conclusion
Results suggest that N- and I-type NB cell subtypes represent an immature bilineage stage, able to progress towards neuronal and glial fates upon induction of differentiation. S-type cells appear irreversibly committed to a glial lineage fate.
Publisher
Springer Science and Business Media LLC
Reference44 articles.
1. Mora J, Gerald WL: Origin of neuroblastic tumors: clues for future therapeutics. Expert Rev Mol Diagn. 2004, 4 (3): 293-302.
2. Gershon TR, Oppenheimer O, Chin SS, Gerald WL: Temporally regulated neural crest transcription factors distinguish neuroectodermal tumors of varying malignancy and differentiation. Neoplasia. 2005, 7 (6): 575-584.
3. Valent A, Benard J, Venuat AM, Silva J, Duverger A, Duarte N, Hartmann O, Spengler BA, Bernheim A: Phenotypic and genotypic diversity of human neuroblastoma studied in three IGR cell line models derived from bone marrow metastases. Cancer Genet Cytogenet. 1999, 112: 124-129.
4. Mora J, Cheung NK, Juan G, Illei P, Cheung I, Akram M, Chi S, Ladanyi M, Cordon-Cardo C, Gerald WL: Neuroblastic and Schwannian stromal cells of neuroblastoma are derived from a tumoral progenitor cell. Cancer Res. 2001, 61: 6892-6898.
5. Coco S, Defferrari R, Scaruffi P, Cavazzana A, Di Cristofano C, Longo L, Mazzocco K, Perri P, Gambini C, Moretti S, Bonassi S, Tonini GP: Genome analysis and gene expression profiling of neuroblastoma and ganglioneuroblastoma reveal differences between neuroblastic and Schwannian stromal cells. J Pathol. 2005, 207: 346-357.
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献