Author:
Kenzelmann Daniela,Chiquet-Ehrismann Ruth,Leachman Nathaniel T,Tucker Richard P
Abstract
Abstract
Background
Teneurins are a unique family of transmembrane proteins conserved from C. elegans and D. melanogaster to mammals. In vertebrates there are four paralogs (teneurin-1 to -4), all of which are expressed prominently in the developing central nervous system.
Results
Analysis of teneurin-1 expression in the developing chick brain by in situ hybridization and immunohistochemistry defined a unique, distinct expression pattern in interconnected regions of the brain. Moreover we found complementary patterns of teneurin-1 and-2 expression in many parts of the brain, including the retina, optic tectum, olfactory bulb, and cerebellum as well as in brain nuclei involved in processing of sensory information. Based on these expression patterns, we suspect a role for teneurins in neuronal connectivity.
In contrast to the cell-surface staining of the antibody against the extracellular domain, an antibody recognizing the intracellular domain revealed nuclear staining in subpopulations of neurons and in undifferentiated mesenchyme. Western blot analysis of brain lysates showed the presence of N-terminal fragments of teneurin-1 containing the intracellular domain indicating that proteolytic processing occurs. Finally, the teneurin-1 intracellular domain was found to contain a nuclear localization signal, which is required for nuclear localization in transfected cells.
Conclusion
Teneurin-1 and -2 are expressed by distinct interconnected populations of neurons in the developing central nervous system. Our data support the hypothesis that teneurins can be proteolytically processed leading to the release of the intracellular domain and its translocation to the nucleus.
Publisher
Springer Science and Business Media LLC
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献