Author:
Harker Brent W,Behura Susanta K,deBruyn Becky S,Lovin Diane D,Mori Akio,Romero-Severson Jeanne,Severson David W
Abstract
Abstract
Background
Aedes aegypti is the most important global vector of dengue virus infection in humans. Availability of the draft genome sequence of this mosquito provides unique opportunities to study different aspects of its biology, including identification of genes and pathways relevant to the developmental processes associated with transition across individual life stages. However, detailed knowledge of gene expression patterns pertaining to developmental stages of A. aegypti is largely lacking.
Results
We performed custom cDNA microarray analyses to examine the expression patterns among six developmental stages: early larvae, late larvae, early pupae, late pupae, and adult male and female mosquitoes. Results revealed 1,551 differentially expressed transcripts (DETs) showing significant differences in levels of expression between these life stages. The data suggests that most of the differential expression occurs in a stage specific manner in A. aegypti. Based on hierarchical clustering of expression levels, correlated expression patterns of DETs were also observed among developmental stages. Weighted gene correlation network analysis revealed modular patterns of expression among the DETs. We observed that hydrolase activity, membrane, integral to membrane, DNA binding, translation, ribosome, nucleoside-triphosphatase activity, structural constituent of ribosome, ribonucleoprotein complex and receptor activity were among the top ten ranked GO (Gene Ontology) terms associated with DETs. Significant associations of DETs were also observed with specific KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway modules. Finally, comparisons with the previously reported developmental transcriptome of the malaria vector, Anopheles gambiae, indicated that gene expression patterns during developmental processes reflect both species-specific as well as common components of the two mosquito species.
Conclusions
Our study shows that genes involved in the developmental life cycle of A. aegypti are expressed in a highly stage-specific manner. This suggests that transcriptional events associated with transition through larval, pupal and adult stages are largely discrete.
Publisher
Springer Science and Business Media LLC
Reference51 articles.
1. Reidenbach KR, Cook S, Bertone MA, Harbach RE, Wiegmann BM, Besansky NJ: Phylogenetic analysis and temporal diversification of mosquitoes (Diptera:Culicidae) based on nuclear genes and morphology. BMC Evol Biol. 2009, 9: 298-10.1186/1471-2148-9-298.
2. Belles X: Origin and Evolution of Insect Metamorphosis. Encyclopedia of Life Sciences (ELS). 2011, Chichester: Wiley
3. Christophers SR: The yellow fever mosquito. Its life history, bionomics and structure. 1960, London: Cambridge University Press
4. Clements AN: The biology of mosquitoes. Development, nutrition and reproduction. 1992, London: Chapman and Hall
5. Riddiford LM, Hiruma K, Zhou X, Nelson CA: Insights into the molecular basis of the hormonal control of molting and metamorphosis from Manduca sexta and Drosophila melanogaster. Insect Biochem Mol Biol. 2003, 33: 1327-38. 10.1016/j.ibmb.2003.06.001.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献