An in vivo reporter of BMP signaling in organogenesis reveals targets in the developing kidney

Author:

Blank Ulrika,Seto Marianne L,Adams Derek C,Wojchowski Don M,Karolak Michele J,Oxburgh Leif

Abstract

Abstract Background Bone morphogenetic proteins (BMPs) regulate essential processes during organogenesis, and a functional understanding of these secreted proteins depends on identification of their target cells. In this study, we generate a transgenic reporter for organogenesis studies that we use to define BMP pathway activation in the developing kidney. Results Mouse strains reporting on BMP pathway activation were generated by transgenically expressing β-galactosidase under the control of BMP responsive elements from Id1. Reporter expression corresponds well with immunoassays for pathway activation in all organs studied, validating the model. Using these reporters we have generated a detailed map of cellular targets of BMP signaling in the developing kidney. We find that SMAD dependent BMP signaling is active in collecting duct trunks, but not tips. Furthermore, glomerular endothelial cells, and proximal nephron tubules from the renal vesicle stage onward show pathway activation. Surprisingly, little activation is detected in the nephrogenic zone of the kidney, and in organ culture BMP treatment fails to activate SMAD dependent BMP signaling in nephron progenitor cells. In contrast, signaling is efficiently induced in collecting duct tips. Conclusion Transgenic reporters driven by control elements from BMP responsive genes such as Id1 offer significant advantages in sensitivity and consistency over immunostaining for studies of BMP pathway activation. They also provide opportunities for analysis of BMP signaling in organ and primary cell cultures subjected to experimental manipulation. Using such a reporter, we made the surprising finding that SMAD dependent BMP signaling is inactive in nephron progenitors, and that these cells are refractory to activation by applied growth factors. Furthermore, we find that the BMP pathway is not normally active in collecting duct tips, but that it can be ectopically activated by BMP treatment, offering a possible explanation for the inhibitory effects of BMP treatment on collecting duct growth and branching.

Publisher

Springer Science and Business Media LLC

Subject

Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3