Author:
Numayama-Tsuruta Keiko,Arai Yoko,Takahashi Masanori,Sasaki-Hoshino Makiko,Funatsu Nobuo,Nakamura Shun,Osumi Noriko
Abstract
Abstract
Background
The transcription factor Pax6 is essential for the development of the central nervous system and it exerts its multiple functions by regulating the expression of downstream target molecules. To screen for genes downstream of Pax6, we performed comprehensive transcriptome profiling analyses in the early hindbrain of Pax6 homozygous mutant and wild-type rats using microarrays.
Results
Comparison of quadruplicate microarray experiments using two computational methods allowed us to identify differentially expressed genes that have relatively small fold changes or low expression levels. Gene ontology analyses of the differentially expressed molecules demonstrated that Pax6 is involved in various signal transduction pathways where it regulates the expression of many receptors, signaling molecules, transporters and transcription factors. The up- or down-regulation of these genes was further confirmed by quantitative RT-PCR. In situ staining of Fabp7, Dbx1, Unc5h1 and Cyp26b1 mRNAs showed that expression of these transcripts not only overlapped with that of Pax6 in the hindbrain of wild-type and Pax6 heterozygous mutants, but also was clearly reduced in the hindbrain of the Pax6 homozygous mutant. In addition, the Pax6 homozygous mutant hindbrain showed that Cyp26b1 expression was lacked in the dorsal and ventrolateral regions of rhombomeres 5 and 6, and that the size of rhombomere 5 expanded rostrocaudally.
Conclusions
These results indicate that Unc5h1 and Cyp26b1 are novel candidates for target genes transactivated by Pax6. Furthermore, our results suggest the interesting possibility that Pax6 regulates anterior-posterior patterning of the hindbrain via activation of Cyp26b1, an enzyme that metabolizes retinoic acid.
Publisher
Springer Science and Business Media LLC
Reference48 articles.
1. Osumi N, Hirota A, Ohuchi H, Nakafuku M, Iimura T, Kuratani S, Fujiwara M, Noji S, Eto K: Pax-6 is involved in the specification of hindbrain motor neuron subtype. Development. 1997, 124: 2961-2972.
2. Numayama-Tsuruta K, Arai Y, Osumi N: The rat Small eye homozygote (rSey2/rSey2) can be regarded as a Pax6 null mutant. Future Medical Engineering Based on Bionanotechnology: Proceedings of the Final Symposium of the Tohoku University 21st Century Center of Excellence Program; Sendai International Center, Sendai, Japan. Edited by: Esashi M, Ishii K, Ohuchi N, Osumi N, Sato M, Yamaguchi T. 2007, Imperial College Press (World Scientific), 151-161.
3. Osumi N: The role of Pax6 in brain patterning. Tohoku J Exp Med. 2001, 193: 163-174. 10.1620/tjem.193.163.
4. Guillemot F: Cell fate specification in the mammalian telencephalon. Prog Neurobiol. 2007, 83: 37-52. 10.1016/j.pneurobio.2007.02.009.
5. Hevner RF, Hodge RD, Daza RA, Englund C: Transcription factors in glutamatergic neurogenesis: conserved programs in neocortex, cerebellum, and adult hippocampus. Neurosci Res. 2006, 55: 223-233. 10.1016/j.neures.2006.03.004.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献