Author:
Henriksen Jørn R,Haug Bjørn Helge,Buechner Jochen,Tømte Ellen,Løkke Cecilie,Flaegstad Trond,Einvik Christer
Abstract
Abstract
Background
Neuroblastoma is a childhood cancer derived from immature cells of the sympathetic nervous system. The disease is clinically heterogeneous, ranging from neuronal differentiated benign ganglioneuromas to aggressive metastatic tumours with poor prognosis. Amplification of the MYCN oncogene is a well established poor prognostic factor found in up to 40% of high risk neuroblastomas.
Using neuroblastoma cell lines to study neuronal differentiation in vitro is now well established. Several protocols, including exposure to various agents and growth factors, will differentiate neuroblastoma cell lines into neuron-like cells. These cells are characterized by a neuronal morphology with long extensively branched neurites and expression of several neurospecific markers.
Results
In this study we use retrovirally delivered inducible short-hairpin RNA (shRNA) modules to knock down MYCN expression in MYCN-amplified (MNA) neuroblastoma cell lines. By addition of the inducer doxycycline, we show that the Kelly and SK-N-BE(2) neuroblastoma cell lines efficiently differentiate into neuron-like cells with an extensive network of neurites. These cells are further characterized by increased expression of the neuronal differentiation markers NFL and GAP43. In addition, we show that induced expression of retrovirally delivered anti-MYCN shRNA inhibits cell proliferation by increasing the fraction of MNA neuroblastoma cells in the G1 phase of the cell cycle and that the clonogenic growth potential of these cells was also dramatically reduced.
Conclusion
We have developed an efficient MYCN-knockdown in vitro model system to study neuronal differentiation in MNA neuroblastomas.
Publisher
Springer Science and Business Media LLC
Reference31 articles.
1. Maris JM, Hogarty MD, Bagatell R, Cohn SL: Neuroblastoma. Lancet. 2007, 369: 2106-2120. 10.1016/S0140-6736(07)60983-0.
2. Bell E, Chen L, Liu T, Marshall GM, Lunec J, Tweddle DA: MYCN oncoprotein targets and their therapeutic potential. Cancer Lett. 2010, 293: 144-157. 10.1016/j.canlet.2010.01.015.
3. Kitanaka C, Kato K, Ijiri R, Sakurada K, Tomiyama A, Noguchi K, et al: Increased Ras expression and caspase-independent neuroblastoma cell death: possible mechanism of spontaneous neuroblastoma regression. J Natl Cancer Inst. 2002, 94: 358-368.
4. Pritchard J, Hickman JA: Why does stage 4 s neuroblastoma regress spontaneously?. Lancet. 1994, 344: 869-870. 10.1016/S0140-6736(94)92834-7.
5. Bolande RP: The spontaneous regression of neuroblastoma. Experimental evidence for a natural host immunity. Pathol Annu. 1991, 26 (Pt 2): 187-199.
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献