Author:
Liu Wan-Ju,Reece-Hoyes John S,Walhout Albertha JM,Eisenmann David M
Abstract
Abstract
Background
Hox genes encode master regulators of regional fate specification during early metazoan development. Much is known about the initiation and regulation of Hox gene expression in Drosophila and vertebrates, but less is known in the non-arthropod invertebrate model system, C. elegans. The C. elegans Hox gene lin-39 is required for correct fate specification in the midbody region, including the Vulval Precursor Cells (VPCs). To better understand lin-39 regulation and function, we aimed to identify transcription factors necessary for lin-39 expression in the VPCs, and in particular sought factors that initiate lin-39 expression in the embryo.
Results
We used the yeast one-hybrid (Y1H) method to screen for factors that bound to 13 fragments from the lin-39 region: twelve fragments contained sequences conserved between C. elegans and two other nematode species, while one fragment was known to drive reporter gene expression in the early embryo in cells that generate the VPCs. Sixteen transcription factors that bind to eight lin-39 genomic fragments were identified in yeast, and we characterized several factors by verifying their physical interactions in vitro, and showing that reduction of their function leads to alterations in lin-39 levels and lin-39::GFP reporter expression in vivo. Three factors, the orphan nuclear hormone receptor NHR-43, the hypodermal fate regulator LIN-26, and the GATA factor ELT-6 positively regulate lin-39 expression in the embryonic precursors to the VPCs. In particular, ELT-6 interacts with an enhancer that drives GFP expression in the early embryo, and the ELT-6 site we identified is necessary for proper embryonic expression. These three factors, along with the factors ZTF-17, BED-3 and TBX-9, also positively regulate lin-39 expression in the larval VPCs.
Conclusions
These results significantly expand the number of factors known to directly bind and regulate lin-39 expression, identify the first factors required for lin-39 expression in the embryo, and hint at a positive feedback mechanism involving GATA factors that maintains lin-39 expression in the vulval lineage. This work indicates that, as in other organisms, the regulation of Hox gene expression in C. elegans is complicated, redundant and robust.
Publisher
Springer Science and Business Media LLC
Reference84 articles.
1. Hueber SD, Lohmann I: Shaping segments: Hox gene function in the genomic age. Bioessays. 2008, 30 (10): 965-979. 10.1002/bies.20823.
2. McGinnis W, Krumlauf R: Homeobox genes and axial patterning. Cell. 1992, 68 (2): 283-302. 10.1016/0092-8674(92)90471-N.
3. Foronda D, de Navas LF, Garaulet DL, Sanchez-Herrero E: Function and specificity of Hox genes. Int J Dev Biol. 2009, 53 (8–10): 1404-1419.
4. Pearson JC, Lemons D, McGinnis W: Modulating Hox gene functions during animal body patterning. Nat Rev Genet. 2005, 6 (12): 893-904. 10.1038/nrg1726.
5. Deutsch J: Hox Genes: Studies from the 20th to the 21st Century. Advance in Experimental Medicine and Biology, Volume 689. Edited by: Deutsch J. 2010, Austin, Texas USA: Landes Bioscience
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献