Author:
Gallardo Viviana E,Liang Jin,Behra Martine,Elkahloun Abdel,Villablanca Eduardo J,Russo Vincenzo,Allende Miguel L,Burgess Shawn M
Abstract
Abstract
Background
Development of the posterior lateral line (PLL) system in zebrafish involves cell migration, proliferation and differentiation of mechanosensory cells. The PLL forms when cranial placodal cells delaminate and become a coherent, migratory primordium that traverses the length of the fish to form this sensory system. As it migrates, the primordium deposits groups of cells called neuromasts, the specialized organs that contain the mechanosensory hair cells. Therefore the primordium provides both a model for studying collective directional cell migration and the differentiation of sensory cells from multipotent progenitor cells.
Results
Through the combined use of transgenic fish, Fluorescence Activated Cell Sorting and microarray analysis we identified a repertoire of key genes expressed in the migrating primordium and in differentiated neuromasts. We validated the specific expression in the primordium of a subset of the identified sequences by quantitative RT-PCR, and by in situ hybridization. We also show that interfering with the function of two genes, f11r and cd9b, defects in primordium migration are induced. Finally, pathway construction revealed functional relationships among the genes enriched in the migrating cell population.
Conclusions
Our results demonstrate that this is a robust approach to globally analyze tissue-specific expression and we predict that many of the genes identified in this study will show critical functions in developmental events involving collective cell migration and possibly in pathological situations such as tumor metastasis.
Publisher
Springer Science and Business Media LLC
Reference51 articles.
1. Haas P, Gilmour D: Chemokine signaling mediates self-organizing tissue migration in the zebrafish lateral line. Dev Cell. 2006, 10: 673-680. 10.1016/j.devcel.2006.02.019.
2. Dambly-Chaudière C, Cubedo N, Ghysen A: Control of cell migration in the development of the posterior lateral line: antagonistic interactions between the chemokine receptors CXCR4 and CXCR7/RDC1. BMC Dev Biol. 2007, 9: 7-23.
3. Valentin G, Haas P, Gilmour D: The chemokine SDF1a coordinates tissue migration through the spatially restricted activation of Cxcr7 and Cxcr4b. Curr Biol. 2007, 17: 1026-1031. 10.1016/j.cub.2007.05.020.
4. Lecaudey V, Cakan-Akdogan G, Norton WH, Gilmour D: Dynamic Fgf signaling couples morphogenesis and migration in the zebrafish lateral line primordium. Development. 2008, 135: 2695-2705. 10.1242/dev.025981.
5. Nechiporuk A, Raible DW: FGF-dependent mechanosensory organ patterning in zebrafish. Science. 2008, 320: 1774-1777. 10.1126/science.1156547.
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献