Author:
Grimm Jochen M,Nikolaou Konstantin,Schindler Andreas,Hettich Reinhard,Heigl Franz,Cyran Clemens C,Schwarz Florian,Klingel Reinhard,Karpinska Anna,Yuan Chun,Dichgans Martin,Reiser Maximilian F,Saam Tobias
Abstract
Abstract
Background
Components of carotid atherosclerotic plaques can reliably be identified and quantified using high resolution in vivo 3-Tesla CMR. It is suspected that lipid apheresis therapy in addition to lowering serum lipid levels also has an influence on development and progression of atherosclerotic plaques. The purpose of this study was to evaluate the influence of chronic lipid apheresis (LA) on the composition of atherosclerotic carotid plaques.
Methods
32 arteries of 16 patients during chronic LA-therapy with carotid plaques and stenosis of 1–80% were matched according to degree of stenosis with 32 patients, who had recently suffered an ischemic stroke. Of these patients only the asymptomatic carotid artery was analyzed. All patients underwent black-blood 3 T CMR of the carotids using parallel imaging and dedicated surface coils. Cardiovascular risk factors were recorded. Morphology and composition of carotid plaques were evaluated. For statistical evaluation Fisher’s Exact and unpaired t-test were used. A p-value <0.05 was considered statistically significant.
Results
Patients in the LA-group were younger (63.5 vs. 73.9. years, p<0.05), had a higher prevalence of hypercholesterolemia and of established coronary heart disease in patients and in first-degree relatives (p<0.05, respectively). LA-patients had smaller maximum wall areas (49.7 vs. 59.6mm2, p<0.05), showed lower prevalence of lipid cores (28.1% vs. 56.3%, p<0.05) and the lipid content was smaller than in the control group (5.0 vs. 11.6%, p<0.05). Minimum lumen areas and maximum total vessel areas did not differ significantly between both groups.
Conclusion
Results of this study suggest that, despite a severer risk profile for cardiovascular complications in LA-patients, chronic LA is associated with significantly lower lipid content in carotid plaques compared to plaques of patients without LA with similar degrees of stenosis, which is characteristic of clinically stable plaques.
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Reference29 articles.
1. Goldstein LB, Bushnell CD, Adams RJ, Appel LJ, Braun LT, Chaturvedi S, Creager MA, Culebras A, Eckel RH, Hart RG, et al: Guidelines for the primary prevention of stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011, 42: 517-84. 10.1161/STR.0b013e3181fcb238.
2. Barter PJ: Coronary plaque regression: role of low density lipoprotein-apheresis. J Am Coll Cardiol. 2002, 40: 228-30. 10.1016/S0735-1097(02)01961-7.
3. Mabuchi H, Koizumi J, Shimizu M, Kajinami K, Miyamoto S, Ueda K, Takegoshi T: Long-term efficacy of low-density lipoprotein apheresis on coronary heart disease in familial hypercholesterolemia. Hokuriku-FH-LDL-Apheresis Study Group. Am J Cardiol. 1998, 82: 1489-95. 10.1016/S0002-9149(98)00692-4.
4. Schuff-Werner P, Schutz E, Seyde WC, Eisenhauer T, Janning G, Armstrong VW, Seidel D: Improved haemorheology associated with a reduction in plasma fibrinogen and LDL in patients being treated by heparin-induced extracorporeal LDL precipitation (HELP). Eur J Clin Invest. 1989, 19: 30-7.
5. Mangge H, Almer G, Truschnig-Wilders M, Schmidt A, Gasser R, Fuchs D: Inflammation, adiponectin, obesity and cardiovascular risk. Curr Med Chem. 2010, 17: 4511-20. 10.2174/092986710794183006.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献