Inter-study reproducibility of cardiovascular magnetic resonance myocardial feature tracking

Author:

Morton Geraint,Schuster Andreas,Jogiya Roy,Kutty Shelby,Beerbaum Philipp,Nagel Eike

Abstract

Abstract Background Cardiovascular magnetic resonance myocardial feature tracking (CMR-FT) is a recently described method of post processing routine cine acquisitions which aims to provide quantitative measurements of circumferentially and radially directed ventricular wall strain. Inter-study reproducibility is important for serial assessments however has not been defined for CMR-FT. Methods 16 healthy volunteers were imaged 3 times within a single day. The first examination was performed at 0900 after fasting and was immediately followed by the second. The third, non-fasting scan, was performed at 1400. CMR-FT measures of segmental and global strain parameters were calculated. Left ventricular (LV) circumferential and radial strain were determined in the short axis orientation (EccSAX and ErrSAX respectively). LV and right ventricular longitudinal strain and LV radial strain were determined from the 4-chamber orientation (EllLV, EllRV, and ErrLAX respectively). LV volumes and function were also analysed. Inter-study reproducibility and study sample sizes required to demonstrate 5% changes in absolute strain were determined by comparison of the first and second exams. The third exam was used to determine whether diurnal variation affected reproducibility. Results CMR-FT strain analysis inter-study reproducibility was variable. Global strain assessment was more reproducible than segmental analysis. Overall EccSAX was the most reproducible measure of strain: coefficient of variation (CV) 38% and 20.3% and intraclass correlation coefficient (ICC) 0.68 (0.55-0.78) and 0.7 (0.32-0.89) for segmental and global analysis respectively. The least reproducible segmental measure was EllRV: CV 60% and ICC 0.56 (0.41-0.69) whilst the least reproducible global measure was ErrLAX: CV 33.3% and ICC 0.44 (0–0.77). Variable reproducibility was also reflected in the calculated sample sizes, which ranged from 11 (global EccSAX) to 156 subjects (segmental EllRV). The reproducibility of LV volumes and function was excellent. There was no diurnal variation in global strain or LV volumetric measurements. Conclusions Inter-study reproducibility of CMR-FT varied between different parameters, as summarized above and was better for global rather than segmental analysis. It was not measurably affected by diurnal variation. CMR-FT may have potential for quantitative wall motion analysis with applications in patient management and clinical trials. However, inter-study reproducibility was relatively poor for segmental and long axis analyses of strain, which have yet to be validated, and may benefit from further development.

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine,Radiology Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3