Right ventricular ejection fraction is better reflected by transverse rather than longitudinal wall motion in pulmonary hypertension

Author:

Kind Taco,Mauritz Gert-Jan,Marcus J Tim,van de Veerdonk Mariëlle,Westerhof Nico,Vonk-Noordegraaf Anton

Abstract

Abstract Background Longitudinal wall motion of the right ventricle (RV), generally quantified as tricuspid annular systolic excursion (TAPSE), has been well studied in pulmonary hypertension (PH). In contrast, transverse wall motion has been examined less. Therefore, the aim of this study was to evaluate regional RV transverse wall motion in PH, and its relation to global RV pump function, quantified as RV ejection fraction (RVEF). Methods In 101 PH patients and 29 control subjects cardiovascular magnetic resonance was performed. From four-chamber cine imaging, RV transverse motion was quantified as the change of the septum-free-wall (SF) distance between end-diastole and end-systole at seven levels along an apex-to-base axis. For each level, regional absolute and fractional transverse distance change (SFD and fractional-SFD) were computed and related to RVEF. Longitudinal measures, including TAPSE and fractional tricuspid-annulus-apex distance change (fractional-TAAD) were evaluated for comparison. Results Transverse wall motion was significantly reduced at all levels compared to control subjects (p < 0.001). For all levels, fractional-SFD and SFD were related to RVEF, with the strongest relation at mid RV (R2 = 0.70, p < 0.001 and R2 = 0.62, p < 0.001). For TAPSE and fractional-TAAD, weaker relations with RVEF were found (R2 = 0.21, p < 0.001 and R2 = 0.27, p < 0.001). Conclusions Regional transverse wall movements provide important information of RV function in PH. Compared to longitudinal motion, transverse motion at mid RV reveals a significantly stronger relationship with RVEF and thereby might be a better predictor for RV function.

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine,Radiology Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3