Reference right atrial dimensions and volume estimation by steady state free precession cardiovascular magnetic resonance

Author:

Maceira Alicia M,Cosín-Sales Juan,Roughton Michael,Prasad Sanjay K,Pennell Dudley J

Abstract

Abstract Background Cardiovascular magnetic resonance (CMR) steady state free precession (SSFP) cine sequences with high temporal resolution and improved post-processing can accurately measure RA dimensions. We used this technique to define ranges for normal RA volumes and dimensions normalized, when necessary, to the influence of gender, body surface area (BSA) and age, and also to define the best 2D images-derived predictors of RA enlargement. Methods For definition of normal ranges of RA volume we studied 120 healthy subjects (60 men, 60 women; 20 subjects per age decile from 20 to 80 years), after careful exclusion of cardiovascular abnormality. We also studied 120 patients (60 men, 60 women; age range 20 to 80 years) with a clinical indication for CMR in order to define the best 1D and 2D predictors of RA enlargement. Data were generated from SSFP cine CMR, with 3-dimensional modeling, including tracking of the atrioventricular ring motion and time-volume curves analysis. Results In the group of healthy individuals, age influenced RA 2-chamber area and transverse diameter. Gender influenced most absolute RA dimensions and volume. Interestingly, right atrial volumes did not change with age and gender when indexed to body surface area. New CMR normal ranges for RA dimensions were modeled and displayed for clinical use with normalization for BSA and gender and display of parameter variation with age. Finally, the best 2D images-derived independent predictors of RA enlargement were indexed area and indexed longitudinal diameter in the 2-chamber view. Conclusion Reference RA dimensions and predictors of RA enlargement are provided using state-of-the-art CMR techniques.

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3