Aortic valve stenotic area calculation from phase contrast cardiovascular magnetic resonance: the importance of short echo time

Author:

O'Brien Kieran R,Gabriel Ruvin S,Greiser Andreas,Cowan Brett R,Young Alistair A,Kerr Andrew J

Abstract

Abstract Background Cardiovascular magnetic resonance (CMR) can potentially quantify aortic valve area (AVA) in aortic stenosis (AS) using a single-slice phase contrast (PC) acquisition at valve level: AVA = aortic flow/aortic velocity-time integral (VTI). However, CMR has been shown to underestimate aortic flow in turbulent high velocity jets, due to intra-voxel dephasing. This study investigated the effect of decreasing intra-voxel dephasing by reducing the echo time (TE) on AVA estimates in patients with AS. Method 15 patients with moderate or severe AS, were studied with three different TEs (2.8 ms/2.0 ms/1.5 ms), in the main pulmonary artery (MPA), left ventricular outflow tract (LVOT) and 0 cm/1 cm/2.5 cm above the aortic valve (AoV). PC estimates of stroke volume (SV) were compared with CMR left ventricular SV measurements and PC peak velocity, VTI and AVA were compared with Doppler echocardiography. CMR estimates of AVA obtained by direct planimetry from cine acquisitions were also compared with the echoAVA. Results With a TE of 2.8 ms, the mean PC SV was similar to the ventricular SV at the MPA, LVOT and AoV0 cm (by Bland-Altman analysis bias ± 1.96 SD, 1.3 ± 20.2 mL/-6.8 ± 21.9 mL/6.5 ± 50.7 mL respectively), but was significantly lower at AoV1 and AoV2.5 (-29.3 ± 31.2 mL/-21.1 ± 35.7 mL). PC peak velocity and VTI underestimated Doppler echo estimates by approximately 10% with only moderate agreement. Shortening the TE from 2.8 to 1.5 msec improved the agreement between ventricular SV and PC SV at AoV0 cm (6.5 ± 50.7 mL vs 1.5 ± 37.9 mL respectively) but did not satisfactorily improve the PC SV estimate at AoV1 cm and AoV2.5 cm. Agreement of CMR AVA with echoAVA was improved at TE 1.5 ms (0.00 ± 0.39 cm2) versus TE 2.8 (0.11 ± 0.81 cm2). The CMR method which agreed best with echoAVA was direct planimetry (-0.03 cm2 ± 0.24 cm2). Conclusion Agreement of CMR AVA at the aortic valve level with echo AVA improves with a reduced TE of 1.5 ms. However, flow measurements in the aorta (AoV 1 and 2.5) are underestimated and 95% limits of agreement remain large. Further improvements or novel, more robust techniques are needed in the CMR PC technique in the assessment of AS severity in patients with moderate to severe aortic stenosis.

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine,Radiology Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3