Predicting high health-cost users among people with cardiovascular disease using machine learning and nationwide linked social administrative datasets

Author:

Nghiem NhungORCID,Atkinson June,Nguyen Binh P.,Tran-Duy An,Wilson Nick

Abstract

Abstract Objectives To optimise planning of public health services, the impact of high-cost users needs to be considered. However, most of the existing statistical models for costs do not include many clinical and social variables from administrative data that are associated with elevated health care resource use, and are increasingly available. This study aimed to use machine learning approaches and big data to predict high-cost users among people with cardiovascular disease (CVD). Methods We used nationally representative linked datasets in New Zealand to predict CVD prevalent cases with the most expensive cost belonging to the top quintiles by cost. We compared the performance of four popular machine learning models (L1-regularised logistic regression, classification trees, k-nearest neighbourhood (KNN) and random forest) with the traditional regression models. Results The machine learning models had far better accuracy in predicting high health-cost users compared with the logistic models. The harmony score F1 (combining sensitivity and positive predictive value) of the machine learning models ranged from 30.6% to 41.2% (compared with 8.6–9.1% for the logistic models). Previous health costs, income, age, chronic health conditions, deprivation, and receiving a social security benefit were among the most important predictors of the CVD high-cost users. Conclusions This study provides additional evidence that machine learning can be used as a tool together with big data in health economics for identification of new risk factors and prediction of high-cost users with CVD. As such, machine learning may potentially assist with health services planning and preventive measures to improve population health while potentially saving healthcare costs.

Funder

Marsden Fund

Division of Sciences, University of Otago

The Health Research Council of New Zealand

Publisher

Springer Science and Business Media LLC

Subject

Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3