Abstract
Abstract
Background
Few studies have systematically examined the efficiency of routine infant immunization services. Using a representative sample of infant immunization sites in Benin, Ghana, Honduras, Moldova, Uganda and Zambia (316 total), we estimated average efficiency levels and variation in efficiency within each country, and investigated the properties of published efficiency estimation techniques.
Methods
Using a dataset describing 316 immunization sites we estimated site-level efficiency using Data Envelopment Analysis (DEA), Stochastic Frontier Analysis (SFA), and a published ensemble method combining these two approaches. For these three methods we operationalized efficiency using the Sheppard input efficiency measure, which is bounded in (0, 1), with higher values indicating greater efficiency. We also compared these methods to a simple regression approach, which used residuals from a conventional production function as a simplified efficiency index. Inputs were site-level service delivery costs (excluding vaccines) and outputs were total clients receiving DTP3. We analyzed each country separately, and conducted sensitivity analysis for different input/output combinations.
Results
Using DEA, average input efficiency ranged from 0.40 in Ghana and Moldova to 0.58 in Benin. Using SFA, average input efficiency ranged from 0.43 in Ghana to 0.69 in Moldova. Within each country scores varied widely, with standard deviation of 0.18–0.23 for DEA and 0.10–0.20 for SFA. Input efficiency estimates generated using SFA were systematically higher than for DEA, and the rank correlation between scores ranged between 0.56–0.79. Average input efficiency from the ensemble estimator ranged between 0.41–0.61 across countries, and was highly correlated with the simplified efficiency index (rank correlation 0.81–0.92) as well as the DEA and SFA estimates.
Conclusions
Results imply costs could be 30–60% lower for fully efficient sites. Such efficiency gains are unlikely to be achievable in practice – some of the apparent inefficiency may reflect measurement errors, or unmodifiable differences in the operating environment. However, adapted to work with routine reporting data and simplified methods, efficiency analysis could triage low performing sites for greater management attention, or identify more efficient sites as models for other facilities.
Funder
Bill and Melinda Gates Foundation
Publisher
Springer Science and Business Media LLC
Reference46 articles.
1. Di Giorgio L, Moses MW, Fullman N, Wollum A, Conner RO, Achan J, et al. The potential to expand antiretroviral therapy by improving health facility efficiency: evidence from Kenya, Uganda, and Zambia. BMC Med. 2016;14(1):108.
2. WHO. Global Vaccine Action Plan 2011-2020. Geneva: WHO; 2013.
3. Kamara LM, Milstien JB, Patyna M, Lydon P, Levin A, Brenzel L. Strategies for financial sustainability of immunization programs: a review of the strategies from 50 national immunization program financial sustainability plans. Vaccine. 2008;26(51):6717–26.
4. Sarr F. Efficiency of immunization service in the Gambia: results of a stakeholder analysis. East African journal of public health. 2010;7(1):68–73.
5. Ebong CE, Levy P. Impact of the introduction of new vaccines and vaccine wastage rate on the cost-effectiveness of routine EPI: lessons from a descriptive study in a Cameroonian health district. Cost Eff Resour Alloc. 2011;9(1):9.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献