Predicting the number of article citations in the field of attention-deficit/hyperactivity disorder (ADHD) with the 100 top-cited articles since 2014: a bibliometric analysis

Author:

Lin Chien-Ho,Chien Tsair-Wei,Yan Yu-HuaORCID

Abstract

Abstract Background Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder in children or early adolescents with an estimated worldwide prevalence of 7.2%. Numerous articles related to ADHD have been published in the literature. However, which articles had ultimate influence is still unknown, and what factors affect the number of article citations remains unclear as well. This bibliometric analysis (1) visualizes the prominent entities with 1 picture using the top 100 most-cited articles, and (2) investigates whether medical subject headings (i.e., MeSH terms) can be used in predicting article citations. Methods By searching the PubMed Central® (PMC) database, the top 100 most-cited abstracts relevant to ADHD since 2014 were downloaded. Citation rank analysis was performed to compare the dominant roles of article types and topic categories using the pyramid plot. Social network analysis (SNA) was performed to highlight prominent entities for providing a quick look at the study result. The authors examined the MeSH prediction effect on article citations using its correlation coefficients (CC). Results The most frequent article types and topic categories were research support by institutes (56%) and epidemiology (28%). The most productive countries were the United States (42%), followed by the United Kingdom (13%), Germany (9%), and the Netherlands (9%). Most articles were published in the Journal of the American Academy of Child and Adolescent Psychiatry (15%) and JAMA Psychiatry (9%). MeSH terms were evident in prediction power on the number of article citations (correlation coefficient = 0.39; t = 4.1; n = 94; 6 articles were excluded because they do not have MeSH terms). Conclusions The breakthrough was made by developing 1 dashboard to display 100 top-cited articles on ADHD. MeSH terms can be used in predicting article citations on ADHD. These visualizations of the top 100 most-cited articles could be applied to future academic pursuits and other academic disciplines.

Publisher

Springer Science and Business Media LLC

Subject

Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3