Mepiquat chloride priming confers the ability of cotton seed to tolerate salt by promoting ABA-operated GABA signaling control of the ascorbate–glutathione cycle

Author:

Qi Qian,Wang Ning,Ruan Sijia,Muhammad Noor,Zhang Hengheng,Shi Jianbin,Dong Qiang,Xu Qinghua,Song Meizhen,Yan Gentu,Zhang Xiling,Wang Xiangru

Abstract

Abstract Background Ensuring that seeds germinate and emerge normally is a prerequisite for cotton production, esp. in areas with salinized soil. Priming with mepiquat chloride (MC) can promote seed germination and root growth under salt stress, but its mechanism has not been fully elucidated. In this study, physiological and biochemical experiments revealed that MC-priming promotes the tolerance of cotton seeds to salt stress by increasing the ability of antioxidant enzymes related to the ascorbate–glutathione (AsA-GSH) cycle to scavenge reactive oxygen species (ROS). Results Results revealed that treatment with inhibitors of abscisic acid (ABA) and γ-aminobutyric acid (GABA) biosynthesis reduced the positive effects of MC-priming. Similarly, MC-priming increased the contents of ABA and GABA under salt stress by stimulating the expression levels of GhNCED2 and GhGAD4 and the activity of calmodulin-binding (CML) glutamate decarboxylase (GAD). Further analysis showed that an inhibitor of ABA synthesis reduced the positive impacts of MC-priming on the content of GABA under salt stress, but the content of ABA was not affected by the GABA synthesis inhibitor. Furthermore, a multi-omics analysis revealed that MC-priming increased the abundance and phosphorylation levels of the proteins related to ABA signaling, CML, and Ca2+ channels/transporters in the MC-primed treatments, which resulted in increased oscillations in Ca2+ in the MC-primed cotton seeds under salt stress. Conclusion In summary, these results demonstrate that MC-mediated ABA signaling operates upstream of the GABA synthesis generated by GAD by activating the oscillations of Ca2+ and then enhancing activity of the AsA-GSH cycle, which ensures that cotton seeds are tolerant to salt stress.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Agricultural and Biological Sciences (miscellaneous),Biochemistry, Genetics and Molecular Biology (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3