Genotypic variance in 13C-photosynthate partitioning and within-plant boll distribution in cotton

Author:

NIE JunjunORCID,QIN Dulin,MAO Lili,LIU Yanhui,DONG Hezhong,SONG Xianliang,SUN Xuezhen

Abstract

Abstract Background Photosynthate partitioning and within-plant boll distribution play an important role in yield formation of cotton; however, if and how they interact to mediate yield remains unclear. The objective of this study was to investigate the genotypic variance in photosynthate partitioning and within-plant boll distribution, with a focus on their interactions with regard to yield and yield components. A field experiment was conducted in the Yellow River region in China in 2017 and 2018 using a randomized complete block design with three replicates. Photosynthate partitioning of three commercial cultivars (DP 99B, Lumianyan 21 and Jimian 169), varying in yield potential, to different organs (including bolls) at early flowering, peak flowering, and peak boll-setting stages, as well as within-plant boll distribution at harvest, and their effects on yield formation were examined. Results Lint yield of Jimian 169 was the highest, followed by Lumianyan 21 and DP 99B. Similar differences were observed in the number of inner bolls and boll weight among the three cultivars. J169 partitioned significantly more photosynthate to the fruit and fiber than Lumianyan 21 and DP 99B and allocated over 80% of assimilates to the inner bolls. Additionally, Lumianyan 21 allocated a higher proportion of photosynthate to bolls and fiber, with 12.5%–17.6% more assimilates observed in the inner bolls, than DP 99B. Conclusions Genotypic variance in lint yield can be attributed to differences in the number of inner bolls and boll weight, which are affected by photosynthate partitioning. Therefore, the partitioning of photosynthate to fiber and inner bolls can be used as an important reference for cotton breeding and cultivation.

Publisher

Springer Science and Business Media LLC

Subject

Agricultural and Biological Sciences (miscellaneous),Biochemistry, Genetics and Molecular Biology (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3