Author:
ZAFAR Muhammad Mubashar,RAZZAQ Abdul,FAROOQ Muhammad Awais,REHMAN Abdul,FIRDOUS Hina,SHAKEEL Amir,MO Huijuan,REN Maozhi
Abstract
AbstractThe introduction of Bacillus thuringiensis (Bt) cotton has reduced the burden of pests without harming the environment and human health. However, the efficacy of Bt cotton has decreased due to field-evolved resistance in insect pests over time. In this review, we have discussed various factors that facilitate the evolution of resistance in cotton pests. Currently, different strategies like pyramided cotton expressing two or more distinct Bt toxin genes, refuge strategy, releasing of sterile insects, and gene silencing by RNAi are being used to control insect pests. Pyramided cotton has shown resistance against different cotton pests. The multiple genes pyramiding and silencing (MGPS) approach has been proposed for the management of cotton pests. The genome information of cotton pests is necessary for the development of MGPS-based cotton. The expression cassettes against various essential genes involved in defense, detoxification, digestion, and development of cotton pests will successfully obtain favorable agronomic characters for crop protection and production. The MGPS involves the construction of transformable artificial chromosomes, that can express multiple distinct Bt toxins and RNAi to knockdown various essential target genes to control pests. The evolution of resistance in cotton pests will be delayed or blocked by the synergistic action of high dose of Bt toxins and RNAi as well as compliance of refuge requirement.
Funder
Genetically Modified Organisms Breeding Major Project of China
Publisher
Springer Science and Business Media LLC
Subject
General Materials Science
Reference130 articles.
1. Adamczyk JJ, Sumerford DV. Potential factors impacting season-long expression of Cry1Ac in 13 commercial varieties of Bollgard® cotton. J Insect Sci. 2001;1:13.
2. Ali M, Luttrell R, Young S III. Susceptibilities of Helicoverpa zea and Heliothis virescens (Lepidoptera: Noctuidae) populations to Cry1Ac insecticidal protein. J Econ Entomol. 2006;99(1):164–75.
3. Arya SK, Dhar YV, Upadhyay SK, et al. De novo characterization of Phenacoccus solenopsis transcriptome and analysis of gene expression profiling during development and hormone biosynthesis. Sci Rep. 2018;8(1):1–13.
4. Bakhsh A, Rao AQ, Shahid AA, Husnain T. Spatio temporal expression pattern of an insecticidal gene (cry2A) in transgenic cotton lines. Notulae Scientia Biologicae. 2012;4:115–9.
5. Bambawale O, Tanwar R, Sharma O, et al. Impact of refugia and integrated pest management on the performance of transgenic (Bacillus thuringiensis) cotton (Gossypium hirsutum). Indian J Agric Sci. 2010;80(8):730–6.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献