Genome-wide characterization of the Rho family in cotton provides insights into fiber development

Author:

HE Man,WANG Xingfen,LIU Shang,CHENG Hailiang,ZUO Dongyun,WANG Qiaolian,LV Limin,ZHANG Youping,SONG GuoliORCID

Abstract

Abstract Background Cotton is the source of natural fibers globally, fulfilling 90% of the textile industry's requirements. However, fiber development is a complex biological process comprising four stages. Fiber develops from a single cell, and cell elongation is a vital process in fiber development. Therefore, it is pertinent to understand and exploit mechanisms underlying cell elongation during fiber development. A previous report about cell division control protein 42 (CDC-42) with its key role in cell elongation in eukaryotes inspired us to explore its homologs Rho GTPases for understanding of cell elongation during cotton fiber development. Result We classified 2 066 Rho proteins from 8 Gossypium species into 5 and 8 groups within A and D sub-genomes, respectively. Asymmetric evolution of Rho members was observed among five tetraploids. Population fixation statistics between two short and long fiber genotypes identified highly diverged regions encompassing 34 Rho genes in G. hirustum, and 31 of them were retained through further validation by genome wide association analysis (GWAS). Moreover, a weighted gene co-expression network characterized genome-wide expression patteren of Rho genes based on previously published transcriptome data. Twenty Rho genes from five modules were identified as hub genes which were potentially related to fiber development. Interaction networks of 5 Rho genes based on transcriptional abundance and gene ontology (GO) enrichment emphasized the involvement of Rho in cell wall biosynthesis, fatty acid elongation, and other biological processes. Conclusion Our study characterized the Rho proteins in cotton, provided insights into the cell elongation of cotton fiber and potential application in cotton fiber improvement.

Funder

National Key Research and Development Program

National Natural Science Foundation of China

Central Public-interest Scientific Institution Basal Research Fund, Chinese Academy of Fishery Sciences

Publisher

Springer Science and Business Media LLC

Subject

Agricultural and Biological Sciences (miscellaneous),Biochemistry, Genetics and Molecular Biology (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3