Author:
Liu Xin,Zhong Shuxin,Qiu Kangjie,Chen Xi,Wu Weiyue,Zheng Jiamian,Liu Yanwen,Wu Haolong,Fan Shiyun,Nie Dingrui,Wang Xianfeng,Yu Zhi,Liao Ziwei,Zhong Mengjun,Li Yangqiu,Zeng Chengwu
Abstract
AbstractDrug resistance and poor treatment response are major obstacles to the effective treatment of acute myeloid leukemia (AML). A deeper understanding of the mechanisms regulating drug resistance and response genes in AML is therefore urgently needed. Our previous research has highlighted the important role of nuclear factor E2-related factor 2 (NRF2) in AML, where it plays a critical role in detoxifying reactive oxygen species and influencing sensitivity to chemotherapy. In this study, we identify a core set of direct NRF2 targets that are involved in ferroptosis, a novel form of cell death. Of particular interest, we find that glutathione peroxidase 4 (GPX4) is a key ferroptosis gene that is consistently upregulated in AML, and high expression of GPX4 is associated with poor prognosis for AML patients. Importantly, simultaneous inhibition of NRF2 with ML385 and GPX4 with FIN56 or RSL3 synergistically targets AML cells, triggering ferroptosis. Treatment with ML385 + FIN56/RSL3 resulted in a marked reduction in NRF2 and GPX4 expression. Furthermore, NRF2 knockdown enhanced the sensitivity of AML cells to the ferroptosis inducers. Taken together, our results suggest that combination therapy targeting both NRF2 and GPX4 may represent a promising approach for the treatment of AML.
Funder
National College Students Innovation and Entrepreneurship Training Program
Basic and Applied Basic Research Foundation of Guangdong Province
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Oncology,Hematology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献