Regulation of metabolic reprogramming by tumor suppressor genes in pancreatic cancer

Author:

Liu Mengqi,Liu Wensheng,Qin Yi,Xu Xiaowu,Yu Xianjun,Zhuo Qifeng,Ji ShunrongORCID

Abstract

Abstract Background Pancreatic cancer continues to be one of the most aggressive malignant tumors. Work in recent years in cancer molecular biology has revealed that metabolic reprogramming is an additional hallmark of cancer that is involved in the pathogenesis of cancers, and is intricately linked to gene mutations. Main text However, though oncogenes such as KRAS and c-Myc play important roles in the process, and have been extensively studied, no substantial improvements in the prognosis of pancreatic cancer have seen. Therefore, some scientists have tried to explain the mechanisms of abnormal cancer metabolism from the perspective of tumor suppressor genes. In this paper, we reviewed researches about how metabolic reprogramming was regulated by tumor suppressor genes in pancreatic cancer and their clinical implications. Conclusion Abnormal metabolism and genetic mutations are mutually causal and complementary in tumor initiation and development. A clear understanding of how metabolic reprogramming is regulated by the mutated genes would provide important insights into the pathogenesis and ultimately treatment of pancreatic cancer.

Funder

National Science Fund for Distinguished Young Scholars

National Natural Science Foundation

Shanghai Sailing Program

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Hematology

Reference123 articles.

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.

2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

3. Warburg O. On respiratory impairment in cancer cells. Science. 1956;124(3215):269–70.

4. Som P, Atkins HL, Bandoypadhyay D, Fowler JS, MacGregor RR, Matsui K, et al. A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): nontoxic tracer for rapid tumor detection. J Nucl Med. 1980;21(7):670–5.

5. Koppenol WH, Bounds PL, Dang CV. Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11(5):325–37.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3