Enhanced depletion of MLL-fusion proteins in acute leukemia: potential for improved therapeutic outcomes

Author:

Che Noelia,Cantilena Sandra,Looi-Somoye Remi,Sundar Danesh,Fung Kent,de Boer Jasper,Williams Owen

Abstract

AbstractRearrangements of the MLL (KMT2A) locus are associated with aggressive leukaemia of both myeloid and lymphoid lineages, that present profound therapeutic challenges in pediatric and adult patient populations. MLL-fusion genes resulting from these rearrangements function as driving oncogenes and have been the focus of research aimed at understanding mechanisms underlying their leukemogenic activity and revealing novel therapeutic opportunities. Inspired by the paradigm of depleting the PML-RARA fusion protein in acute promyelocytic leukemia using all-trans retinoic acid and arsenic trioxide, we conducted a screen to identify FDA-approved drugs capable of depleting MLL-fusion protein expression in leukemia cells. Previously, we reported potent anti-leukemia effects of disulfiram (DSF), identified through this screen. In the present study, we demonstrate that another hit compound, niclosamide (NSM), is also able to deplete MLL-fusion proteins derived from a range of different MLL-fusion genes in both acute myeloid (AML) and acute lymphoid (ALL) leukemias. Loss of MLL-fusion protein appeared to result from inhibition of global protein translation by NSM. Importantly, combination of DSF with NSM enhanced MLL-fusion protein depletion. This led to more profound inhibition of downstream transcriptional leukemogenic programs regulated by MLL-fusion proteins and more effective killing of both MLL-rearranged AML and ALL cells. In contrast, DSF/NSM drug combination had little impact on normal hematopoietic progenitor cell differentiation. This study demonstrates that two FDA-approved drugs with excellent safety profiles can be combined to increase the efficacy of MLL-fusion protein depletion and elimination of MLL-rearranged leukaemia.

Funder

Action Medical Research

NIHR Great Ormond Street Hospital Biomedical Research Centre

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3