Author:
Wang Linqin,Lv Yuqi,Zhou Linghui,Wu Shenghao,Zhu Yuanyuan,Fu Shan,Ding Shuyi,Hong Ruimin,Zhang Mingming,Yu Hanjing,Chang Alex H.,Wei Guoqing,Hu Yongxian,Huang He
Abstract
AbstractAlthough the efficacy of chimeric antigen receptor (CAR)-T cell therapy has been widely demonstrated, its clinical application is hampered by the complexity and fatality of its side effects. Cytokine release syndrome (CRS) is the most common toxicity following CAR-T cell infusion, and its symptoms substantially overlap with those of infection. Whereas, current diagnostic techniques for infections are time-consuming and not highly sensitive. Thus, we are aiming to develop feasible and efficient models to optimize the differential diagnosis in clinical practice. This study included 191 febrile patients from our center, including 85 with CRS-related fever and 106 with infectious fever. By leveraging the serum cytokine profile at the peak of fever, we generated differential models using a classification tree algorithm and a stepwise logistic regression analysis, respectively. The first model utilized three cytokines (IFN-β, CXCL1, and CXCL10) and demonstrated high sensitivity (90% training, 100% validation) and specificity (98.44% training, 90.48% validation) levels. The five-cytokine model (CXCL10, CCL19, IL-4, VEGF, and CCL20) also showed high sensitivity (91.67% training, 95.65% validation) and specificity (98.44% training, 100% validation). These feasible and accurate differentiation models may prompt early diagnosis of infections during immune therapy, allowing for early and appropriate intervention.
Funder
Discipline Construction Project Fund for Nursing Research, FAHZU
Medical Science and Technology Project of Zhejiang Provincial Health Commission
National natural Science Foundation of China
Sanming Project of Medicine in Shenzhen
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献