The abundance of the short GATA1 isoform affects megakaryocyte differentiation and leukemic predisposition in mice

Author:

Ishihara Daishi,Hasegawa Atsushi,Hirano Ikuo,Engel James Douglas,Yamamoto Masayuki,Shimizu Ritsuko

Abstract

AbstractTranscription factor GATA1 controls the delicate balance between proliferation, differentiation and apoptosis in both the erythroid and megakaryocytic lineages. In addition to full-length GATA1, there is an GATA1 isoform, GATA1s, that lacks the amino-terminal transactivation domain. Somatic GATA1 mutations that lead to the exclusive production of GATA1s appear to be necessary and sufficient for the development of a preleukemic condition called transient myeloproliferative disorder (TMD) in Down syndrome newborns. Subsequent clonal evolution among latent TMD blasts leads to the development of acute megakaryoblastic leukemia (AMKL). We originally established transgenic mice that express only GATA1s, which exhibit hyperproliferation of immature megakaryocytes, thus mimicking human TMD; however, these mice never developed AMKL. Here, we report that transgenic mice expressing moderate levels of GATA1s, i.e., roughly comparable levels to endogenous GATA1, were prone to develop AMKL in young adults. However, when GATA1s is expressed at levels significantly exceeding that of endogenous GATA1, the development of leukemia was restrained in a dose dependent manner. If the transgenic increase of GATA1s in progenitors remains small, GATA1s supports the terminal maturation of megakaryocyte progenitors insufficiently, and consequently the progenitors persisted, leading to an increased probability for acquisition of additional genetic modifications. In contrast, more abundant GATA1s expression compensates for this maturation block, enabling megakaryocytic progenitors to fully differentiate. This study provides evidence for the clinical observation that the abundance of GATA1s correlates well with the progression to AMKL in Down syndrome.

Funder

Japan Society for the Promotion of Science

Japan Agency for Medical Research and Development

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3