Author:
Chen Erbao,He Yu,Jiang Jing,Yi Jing,Zou Zhilin,Song Qiuzi,Ren Qingqi,Lin Zewei,Lu Yi,Liu Jikui,Zhang Jian
Abstract
Abstract
Background
Hepatocellular carcinoma (HCC) is one of the most lethal malignant tumors. Cell division cycle associated 8 (CDCA8) is an important multifactorial regulator in cancers. However, its up and downstream targets and effects in HCC are still unclear.
Methods
A comprehensive bioinformatics analysis was performed using The Cancer Genome Atlas dataset (TCGA) to explore novel core oncogenes. We quantified CDCA8 levels in HCC tumors using qRT-PCR. HCC cell’s proliferative, migratory, and invasive abilities were detected using a Cell Counting Kit-8 (CCK-8) assay, 5-ethynyl-2′-deoxyuridine (EdU) assay, clone formation, and a Transwell assay. An orthotopic tumor model and tail vein model were constructed to determine the effects of CDCA8 inhibition in vivo. The mechanism underlying CDCA8 was investigated using RNA sequencing. The prognostic value of CDCA8 was assessed with immunohistochemical staining of the tissue microarrays.
Results
CDCA8 was identified as a novel oncogene during HCC development. The high expression of CDCA8 was an independent predictor for worse HCC outcomes both in publicly available datasets and in our cohort. We found that CDCA8 knockdown inhibited HCC cell proliferation, colony formation, and migration by suppressing the MEK/ERK pathway in vitro. Moreover, CDCA8 deficiency significantly inhibited tumorigenesis and metastasis. Next-generation sequencing and laboratory validation showed that CDCA8 silencing inhibited the expression of TPM3, NECAP2, and USP13. Furthermore, NA-YA overexpression upregulated the expression of CDCA8. CDCA8 knockdown could attenuate NF-YA-mediated cell invasion in vitro. The expression of NF-YA alone or in combined with CDCA8 were validated as significant independent risk factors for patient survival.
Conclusion
Our findings revealed that the expression of CDCA8 alone or in combined with NF-YA contributed to cancer progression, and could serve as novel potential therapeutic targets for HCC patients.
Funder
China Postdoctoral Science Foundation
Science, Technology and Innovation Commission of Shenzhen Municipality
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Oncology,Hematology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献