Modified dendritic cell-derived exosomes activate both NK cells and T cells through the NKG2D/NKG2D-L pathway to kill CML cells with or without T315I mutation

Author:

Du Zhuanyun,Huang Zhenglan,Chen Xi,Jiang Guoyun,Peng Yuhang,Feng Wenli,Huang Ningshu

Abstract

Abstract Background Tyrosine kinase inhibitors have achieved quite spectacular advances in the treatment of chronic myeloid leukemia (CML), but disease progression and drug resistance that related to the T315I mutation, remain major obstacles. Dendritic cell-derived exosomes (Dex) induce NK cell immunity, but have yet to achieve satisfactory clinical efficacy. An approach to potentiate antitumor immunity by inducing both NK- and T-cell activation is urgently needed. Retinoic acid early inducible-1γ (RAE-1γ), a major ligand of natural killer group 2 member D (NKG2D), plays an important role in NK-cell and T-lymphocyte responses. We generated RAE-1γ enriched CML-specific Dex (CML-RAE-1γ-Dex) from dendritic cells (DCs) pulsed with lysates of RAE-1γ-expressing CML cells or T315I-mutant CML cells, aiming to simultaneously activate NK cells and T lymphocytes. Methods We generated novel CML-RAE-1γ-Dex vaccines, which expressed RAE-1γ, and were loaded with CML tumor cell lysates. NK cells or T lymphocytes were coincubated with CML-RAE-1γ-Dex vaccines. Flow cytometry was performed to evaluate the activation and proliferation of these immune cells. Cytokine production and cytotoxicity toward CML cells with or without the T315I mutation were detected by ELISPOT, ELISA and LDH assays. CML models induced by BCR-ABL or BCR-ABLT315I were used to determine the immunological function of Dex in vivo. Results Herein, CML-RAE-1γ-Dex were prepared. CML-RAE-1γ-Dex effectively enhanced the proliferation and effector functions of NK cells, CD4+ T cells and CD8+ T cells, which in turn produced strong anti-CML efficacy in vitro. Moreover, CML-RAE-1γ-Dex-based immunotherapy inhibited leukemogenesis and generated durable immunological memory in CML mouse models. Similar immune responses were also observed with imatinib-resistant CML cells carrying the T315I mutation. Conclusions This approach based on CML-RAE-1γ-Dex vaccines may be a promising strategy for CML treatment, especially for cases with the T315I mutation.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Hematology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3