Targeting NOTCH1 in combination with antimetabolite drugs prolongs life span in relapsed pediatric and adult T-acute lymphoblastic leukemia xenografts

Author:

Minuzzo Sonia,Agnusdei Valentina,Pinazza Marica,Amaro Adriana A.,Sacchetto Valeria,Pfeffer Ulrich,Bertorelle Roberta,Spinelli Orietta,Serafin Valentina,Indraccolo Stefano

Abstract

AbstractT-cell acute lymphoblastic leukemia (T-ALL) is a hematologic tumor, characterized by several genetic alterations, that constitutes 15% of pediatric and 25% of adult ALL. While with current therapeutic protocols children and adults’ overall survival (OS) rates reach 85–90% and 40–50%, respectively, the outcome for both pediatric and adult T-ALL patients that relapse or are refractory to induction therapy, remains extremely poor, achieving around 25% OS for both patient groups. About 60% of T-ALL patients show increased NOTCH1 activity, due to activating NOTCH1 mutations or alterations in its ubiquitin ligase FBXW7. NOTCH signaling has been shown to contribute to chemotherapy resistance in some tumor models. Hence, targeting the NOTCH1 signaling pathway may be an effective option to overcome relapsed and refractory T-ALL.Here, we focused on the therapeutic activity of the NOTCH1-specific monoclonal antibody OMP-52M51 in combination either with drugs used during the induction, consolidation, or maintenance phase in mice xenografts established from pediatric and adult relapsed NOTCH1 mutated T-ALL samples. Interestingly, from RNAseq data we observed that anti-NOTCH1 treatment in vivo affects the purine metabolic pathway. In agreement, both in vitro and in vivo, the greatest effect on leukemia growth reduction was achieved by anti-NOTCH1 therapy in combination with antimetabolite drugs. This result was further corroborated by the longer life span of mice treated with the anti-NOTCH1 in combination with antimetabolites, indicating a novel Notch-targeted therapeutic approach that could ameliorate pediatric and adult T-ALL patients outcome with relapse disease for whom so far, no other therapeutic options are available.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Hematology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3