Predictive strategies for oocyte maturation in IVF cycles: from single indicators to integrated models

Author:

He Li-Na,Xu Qing,Lin Jie,Liu Yi,Chen WeiORCID

Abstract

AbstractAccurate prediction of oocyte maturation is a critical determinant of success in in vitro fertilization-embryo transfer (IVF-ET) procedures. This review provides a comprehensive analysis of the various predictive approaches employed to assess oocyte maturity, including single indicators, combined indicators, and predictive models. Factors such as ovarian reserve, patient characteristics, and controlled ovarian hyperstimulation (COH) strategies can significantly influence oocyte maturation rates. Single indicators, including hormone levels, ultrasound parameters, and clinical parameters, have been extensively studied. However, their predictive power may be limited when used in isolation. Combined indicators, integrating multiple parameters, have demonstrated improved predictive performance compared to single indicators. Additionally, predictive models and algorithms, such as machine learning and deep learning models, have emerged as promising tools for assessing oocyte maturity. These models leverage advanced statistical and computational methods to analyze complex datasets and identify patterns that can predict oocyte maturation rates with potentially higher accuracy. Despite these advancements, several gaps and limitations persist, including limited generalizability, lack of standardization, insufficient external validation, and the need to incorporate patient-specific factors and emerging technologies. The review highlights potential areas for further research, such as multicenter collaborative studies, integration of advanced omics technologies, development of personalized prediction models, and investigation of trigger time optimization strategies. Recommendations for clinical practice include utilizing a combination of indicators, adopting validated predictive models, tailoring approaches based on individual patient characteristics, continuous monitoring and adjustment, and fostering multidisciplinary collaboration. Accurate prediction of oocyte maturation holds profound implications for improving the success rates of IVF-ET and enhancing the chances of achieving a healthy pregnancy. Continued research, innovative approaches, and the implementation of evidence-based practices are essential to optimize assisted reproductive outcomes.

Funder

Zigong Key Scientific and Technology Project

Natural Science Foundation of Sichuan

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3