Using artificial intelligence to predict the intrauterine insemination success rate among infertile couples

Author:

Sene Azadeh Akbari,Zandieh Zahra,Soflaei Mojgan,Torshizi Hamid Mokhtari,Sheibani Kourosh

Abstract

Abstract Background To evaluate the use of artificial intelligence (AI) in predicting the success rate of intrauterine insemination (IUI) treatment among infertile couples and also to determine the importance of each of the parameters affecting IUI success. This study was a retrospective cohort study in which information from 380 infertile couples undergoing IUI treatment (190 cases resulting in positive pregnancy test and 190 cases of failed IUI) including underlying factors, female factors, sperm parameters at the beginning of the treatment cycle, and fertility results were collected from 2013 to 2019 and evaluated to determine the effectiveness of AI in predicting IUI success. Results We used the most important factors influencing the success of IUI as a neural network input. With the help of a three-layer neural network, the accuracy of the AI to predict the success rate of IUI was 71.92% and the sensitivity and specificity were 76.19% and 66.67%, respectively. The effect of each of the predictive factors was obtained by calculating the ROC curve and determining the cut-off point. Conclusions The morphology, total motility, and progressive motility of the sperm were found to be the most important predictive factors for IUI success. In this study, we concluded that by predicting IUI success rate, artificial intelligence can help clinicians choose individualized treatment for infertile couples and to shorten the time to pregnancy.

Publisher

Springer Science and Business Media LLC

Subject

Obstetrics and Gynecology,Reproductive Medicine

Reference29 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The sequestosome 1 protein: therapeutic vulnerabilities in ovarian cancer;Clinical and Translational Oncology;2023-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3