Partitioning behavior, source identification, and risk assessment of perfluorinated compounds in an industry-influenced river

Author:

Lv Jiapei,Guo Changsheng,Liang Shuxuan,Zhang Yuan,Xu JianORCID

Abstract

Abstract Background The widespread application of perfluorinated compounds (PFCs) makes them ubiquitously distributed in the environment. Investigation of contamination profiles, distribution, possible sources and risks of PFCs in Liaohe River, an industry-influenced river in northeast China was conducted in the present study. Results The total PFCs concentrations (∑PFCs) were in the range 0.38–127.88 ng/L (average value of 36.41 ng/L) in water and 1.72–10.44 ng/g dry weight (average of 4.99 ng/g) in sediment. Perfluorooctanoic acid (PFOA) was the dominant individual in water and sediment phases, in the range 0.38–73.94 ng/L in water and below detection limit (BDL) to 7.88 ng/g dw in the sediments. The organic carbon normalized partition coefficients (Koc) ranged from 2.46 L/kg (PFHxA) to 4.29 L/kg (PFUnDA). The average Koc values for perfluorocarboxylic acids (PFCAs) increased by 0.13–0.62 log unit with each increasing CF2 moiety, and the Koc values were lower than perfluoroalkyl sulfonates (PFASs). The sources of PFCs identified from diagnostic ratios suggested that the contaminants were mainly from the emission of manufacturing processes and precursors degradation. Result from risk assessment indicated that the immediate health impact through intaking water was negligible, but the levels of PFOA in surface water might cause effects on aquatic ecosystem. The mass inventories of ∑PFCs and PFOA were estimated to be 328.74 t and 103.43 t in the study area, respectively, suggesting that the sediment in Liaohe River may act as a potential PFCs source to the surrounding areas. Conclusion This study demonstrated that PFCs were widely presented in the water and sediments of Liaohe River. In general, PFCAs had higher concentrations and detection frequency than PFSAs, and PFCAs with short carbon chains had much higher detection frequencies than long-carbon chain compounds in water. Among all PFC homologues, the average Koc increased with the increased carbon chain. Koc values were higher for PFSAs than PFCAs. The risk assessment suggested that PFOA in water may exert adverse effect on the aquatic ecosystem. Liaohe River was likely acting as a PFCs source to the surrounding area.

Funder

Major Science and Technology Program for Water Pollution Control and Treatment

Publisher

Springer Science and Business Media LLC

Subject

Pollution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3