Italian reference rivers under the Water Framework Directive umbrella: do natural factors actually depict the observed nutrient conditions?

Author:

Erba Stefania,Buffagni Andrea,Cazzola Marcello,Balestrini Raffaella

Abstract

Abstract Background Despite the efforts made in the last century to counteract the nutrient enrichment from diffuse and point-sources, the excess of nitrogen and phosphorous is among the main causes of degradation of European rivers. In this context, determining natural background concentrations of nutrients in rivers is crucial for a correct definition of their ecological status. In the most anthropized regions, this is a difficult task. This study provides a nation-wide assessment of the nutrient concentration variability between Italian river reference sites. Results We applied the Affinity Propagation technique to identify groups of river sites classified as reference based on measured nutrients and oxygen water saturation. The role of natural and anthropogenic factors determining differences in nutrients concentration between groups of sites was explored. Nitrate concentrations varied from 0.01 mg N l−1 to more than 5 mg N l−1. Ammonia and total phosphorous varied between 0.001 and 0.12 mg l−1. Observed nutrient levels, although in line with those identified for reference sites in other countries, largely exceed the ranges reported for natural basins. Atmospheric deposition of inorganic N and artificial and/or high-impact agricultural land use are the major factors determining differences in nutrient concentration. Factors like, e.g. catchment size, precipitation amount and altitude do not play a relevant role in explaining nutrient differences between groups of reference sites. Conclusions We especially focused on (i) major causes of failure in the selection of appropriate reference sites in Italy; (ii) the potential of setting higher NO3-N thresholds for the classification of ecological status in specific areas, and (iii) the prospective of a regionalization approach, in which human effects are accepted to a low degree for reference site selection or when setting thresholds for peculiar geographical areas.

Publisher

Springer Science and Business Media LLC

Subject

Pollution

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3