Water level prediction using long short-term memory neural network model for a lowland river: a case study on the Tisza River, Central Europe

Author:

Vizi Zsolt,Batki Bálint,Rátki Luca,Szalánczi Szabolcs,Fehérváry István,Kozák Péter,Kiss Tímea

Abstract

Abstract Background Precisely predicting the water levels of rivers is critical for planning and supporting flood hazard and risk assessments and maintaining navigation, irrigation, and water withdrawal for urban areas and industry. In Hungary, the water level of rivers has been recorded since the early nineteenth century, and various water level prediction methods were developed. The Discrete Linear Cascade Model (DLCM) has been used since 1980s. However, its performance is not always reliable under the current climate-driven hydrological changes. Therefore, we aimed to test machine learning algorithms to make 7-day ahead forecasts, choose the best-performing model, and compare it with the actual DLCM. Results According to the results, the Long Short-Term Memory (LSTM) model provided the best results in all time horizons, giving more precise predictions than the Baseline model, the Linear or Multilayer Perceptron Model. Despite underestimating water levels, the validation of the LSTM model revealed that 68.5‒76.1% of predictions fall within the required precision intervals. Predictions were relatively accurate for low (≤ 239 cm) and flood stages (≥ 650 cm), but became less reliable for medium stages (240–649 cm). Conclusions The LSTM model provided better results in all hydrological situations than the DLCM. Though, LSTM is not a novel concept, its encoder–decoder architecture is the best option for solving multi-horizon forecasting problems (or “Many-to-Many” problems), and it can be trained effectively on vast volumes of data. Thus, we recommend testing the LSTM model in similar hydrological conditions (e.g., lowland, medium-sized river with low slope and mobile channel) to get reliable water level forecasts under the rapidly changing climate and various human impacts. Graphical Abstract

Funder

University of Szeged

Publisher

Springer Science and Business Media LLC

Subject

Pollution

Reference42 articles.

1. Adikari KE, Shrestha S, Ratnayake DT, Budhathoki A, Mohanasundaram S, Dailey MN (2021) Evaluation of artificial intelligence models for flood and drought forecasting in arid and tropical regions. Environ Model Softw 144:105136

2. Ahmed AAM, Deo RC, Ghahramani A, Feng Q, Raj N, Yin Z, Yang L (2022) New double decomposition deep learning methods for river water level forecasting. Sci Total Environ 831:154722

3. Bartha P, Bálint G, Gauzer B (1998) Expected evolution of the Tisza flood wave. VITUKI Hungary Ltd, Budapest, p 22

4. Bartha P, Szöllősi-Nagy A, Harkányi K (1983) Hydrological data collection and forecasting system. Danube Vízügyi Közlemények 45(3):373–388

5. Bálint G, Bartha P (1982) Large-scale assessment of snow resources for forecasting spring flow. Hydrological Aspects of Alpine and High-Mountain Areas. Int Assoc Hydrol Sci 138:203–208

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3